kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Supplementary Power Control of an HVDC System and Its Impact on Electromechanical Dynamics
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0002-2464-5378
Svenska Kraftnät, Dept Syst Dev, S-17224 Sundbyberg, Sweden..
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0002-6431-9104
2021 (English)In: IEEE Transactions on Power Systems, ISSN 0885-8950, E-ISSN 1558-0679, Vol. 36, no 5, p. 4599-4610Article in journal (Refereed) Published
Abstract [en]

This paper presents a comprehensive analysis of the impact that supplementary power control of an HVDC link has on the electromechanical dynamics of power systems. The presented work addresses an interesting phenomenon that may occur when an HVDC power controller is installed to support frequency stability. In specific cases, a high gain HVDC frequency controller could deteriorate system damping. The given analytical study is the first of its kind that addresses this issue by including both: (i) the important higher-order generator dynamics that affect small signal stability simultaneously with an HVDC control as well as (ii) the available local angle/frequency input signals of the controller. The methodological approach here analytically formulates the impact an HVDC control has on the single generator dynamics. Furthermore, the relationship between the damping/synchronizing coefficients and the HVDC gain is explicitly derived when a frequency proportional HVDC controller is installed. The derived expressions confirm that, indeed, there is an optimal HVDC gain with respect to the damping coefficient and a typically positive impact of the HVDC controller on the synchronizing component. Finally, the developed theoretical foundation is demonstrated by the tools of linear and nonlinear analysis in a one-machine system case study.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2021. Vol. 36, no 5, p. 4599-4610
Keywords [en]
HVDC transmission, Power system stability, Power system dynamics, Frequency control, Power control, Generators, Damping, Active power control, frequency stability support, high voltage direct current (HVDC) system, small signal stability assessment
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-301989DOI: 10.1109/TPWRS.2021.3056763ISI: 000686891700069Scopus ID: 2-s2.0-85101430510OAI: oai:DiVA.org:kth-301989DiVA, id: diva2:1594840
Note

QC 20210916

Available from: 2021-09-16 Created: 2021-09-16 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Coordinated Frequency Control Using DC Interconnections Between AC Systems: Utilizing Fast Frequency Support through HVDC Links and Evaluating the Newly Uncovered Dynamics in Low-Inertia Power Systems
Open this publication in new window or tab >>Coordinated Frequency Control Using DC Interconnections Between AC Systems: Utilizing Fast Frequency Support through HVDC Links and Evaluating the Newly Uncovered Dynamics in Low-Inertia Power Systems
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transmission system operators are increasingly adopting renewable energy sources in response to the escalating need to reduce environmental pollution. However, renewable energy sources, like wind and solar power, connect to the grid through power electronics, offering no inherent inertia. This reduction in inertia substantially deteriorates the frequency responses during large power disturbances. Frequency Containment Reserves (FCR) are designed to counteract these disturbances and stabilize frequency within a few seconds after an imbalance has occurred. However, in scenarios with low inertia and large power disturbances, relying solely on FCR may prove insufficient to maintain frequency within acceptable limits, risking power system blackouts and severe disruptions. This thesis, therefore, conducts a comprehensive evaluation of fast frequency support in the form of Emergency Power Control (EPC) from High Voltage Direct Current (HVDC) links as a complement to FCR.

Unlike prior research, which overlooked the consideration of technical requirements of FCR responses and their significance for EPC evaluation, this thesis fills these gaps. Additionally, previous literature examining EPC has not confirmed a reliable solution for a system of various HVDC links.

Various EPC designs are evaluated to reduce frequency deviations and avoid negative interactions. This thesis employs dynamic simulations and, where appropriate, various linear control theories. A spectrum of system models is used, from simplified single-machine equivalents to detailed multi-machine models, aiming to highlight common findings, explain disparities, and capture relevant stability interactions. Particular attention is given to voltage-dependent dynamics, which are often overlooked in frequency control assessments. Moreover, considering EPC's ability to apply large gains, the thesis explores its impact on small-signal stability.

The droop frequency-based EPC using local inputs emerges as a key and safe solution for controlling the frequency in the Nordic power system for present and future operations. It is shown that the proposed EPC reduces the frequency deviations when appropriate droop values are chosen. Even more, the research demonstrates stability and cost benefits when efficiently distributing EPC among different HVDC links and coordinating it with the FCR. The simple EPC design allowed for analyzing various dynamic interactions and derivations of strategies for avoiding the ones of a negative nature. Finally, the thesis confirms the overall positive and sustainable role of the proposed EPC.

Abstract [sv]

Systemoperatörer av överföringssystem hanterar en allt större andel förnybara energikällor som ett resultat av pågående energiomställning. Förnybara energikällor, så som vind- och solkraft, ansluts till elsystemet genom kraftelektronik vilket innebär att de inte bidrar med tröghet till elsystemet. Minskning av tröghet i elsystemet försämrar frekvenshållningen, speciellt då stora obalanser inträffar. Frekvenshållningsreserverna (FCRs – frequency containment reserves) är utformade för att stabilisera frekvensen inom några sekunder efter att en obalans inträffat. I scenarier med låg tröghet i elsystemet och då en stor obalans inträffar kan frekvenshållningsreserverna vara otillräckliga för att stabilisera och hålla frekvensen inom acceptabla gränser. Detta innebär en risk för ofrivillig automatisk förbrukningsbortkoppling samt risk för nätsammanbrott och därmed allvarliga störningar i elförsörjningen. Syftet med denna avhandling är att undersöka snabb frekvensreserv i form av nödeffekt (EPC) från högspänd likströmsförbindelser (HVDC – high voltage direct current) som ett komplement till frekvenshållningsreserverna.

Tidigare forskning har inte tagit hänsyn till tekniska krav på frekvenshållningsreserverna och deras betydelse för utvärderingen av nödeffekt vilket denna avhandling avser att behandla. Dessutom har tidigare litteratur som undersöker nödeffekt inte utvecklat en effektiv och tillförlitlig lösning för ett elsystem där olika HVDC-länkar ingår.

I denna avhandling utvärderas olika designer av nödeffekt med syftet att minska frekvensavvikelsen efter att en stor obalans har inträffat samt syftet att undvika negativa stabilitetsinteraktioner. Dynamiska simuleringar genomförs och olika linjära reglertekniska metoder/teorier används i analyserna. Ett flertal olika elsystemmodeller används, från en enkel en-maskinekvivalenten till mer detaljerade fler-maskinmodeller. Syftet med att använda olika modeller är att kunna förklara och verifiera resultat från teoretiska beräkningar samt att fånga relevanta stabilitetsinteraktioner. Särskilt fokus är på spänningsberoende dynamik vilken ofta bortses vid utvärdering av frekvensresponsen. Avhandlingen undersöker även inverkan på småsignalstabilitet vid hög förstärkning i nödeffektregleringen. 

Nödeffekt som regleras proportionellt mot frekvensavvikelsen och som använder lokala mätningar utgör en säker och robust lösning för att förbättra frekvensresponsen i det nordiska kraftsystemet, både i nu och framöver. Avhandlingen visar dessutom stabilitets- och kostnadsfördelar vid noga avvägd distribuering av nödeffekt mellan olika HVDC-förbindelser och samordning med frekvenshållningsreserverna. Den enkla och robusta nödeffektdesignen gör det möjligt att analysera olika dynamiska interaktioner och varierande strategier för att undvika negativa stabilitetsinteraktioner. Slutligen visar avhandlingen den övergripande positiva påverkan och framtida rollen av föreslagen nödeffektdesign.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. xviii, 129
Series
TRITA-EECS-AVL ; 2024:25
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-344534 (URN)978-91-8040-861-5 (ISBN)
Public defence
2024-04-18, F3, Lindstedtsvägen 26 & 28, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20240320

Available from: 2024-03-20 Created: 2024-03-18 Last updated: 2024-03-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Obradovic, DaniloOluic, MarinaGhandhari, Mehrdad

Search in DiVA

By author/editor
Obradovic, DaniloOluic, MarinaGhandhari, Mehrdad
By organisation
Electric Power and Energy Systems
In the same journal
IEEE Transactions on Power Systems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 369 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf