kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Minute-Made, High-Efficiency Nanostructured Bi2Te3 via High-Throughput Green Solution Chemical Synthesis
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-5672-5727
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics.
Istanbul Univ, Dept Phys, TR-34135 Istanbul, Turkey..
Show others and affiliations
2021 (English)In: Nanomaterials, E-ISSN 2079-4991, Vol. 11, no 8, article id 2053Article in journal (Refereed) Published
Abstract [en]

Scalable synthetic strategies for high-quality and reproducible thermoelectric (TE) materials is an essential step for advancing the TE technology. We present here very rapid and effective methods for the synthesis of nanostructured bismuth telluride materials with promising TE performance. The methodology is based on an effective volume heating using microwaves, leading to highly crystalline nanostructured powders, in a reaction duration of two minutes. As the solvents, we demonstrate that water with a high dielectric constant is as good a solvent as ethylene glycol (EG) for the synthetic process, providing a greener reaction media. Crystal structure, crystallinity, morphology, microstructure and surface chemistry of these materials were evaluated using XRD, SEM/TEM, XPS and zeta potential characterization techniques. Nanostructured particles with hexagonal platelet morphology were observed in both systems. Surfaces show various degrees of oxidation, and signatures of the precursors used. Thermoelectric transport properties were evaluated using electrical conductivity, Seebeck coefficient and thermal conductivity measurements to estimate the TE figure-of-merit, ZT. Low thermal conductivity values were obtained, mainly due to the increased density of boundaries via materials nanostructuring. The estimated ZT values of 0.8-0.9 was reached in the 300-375 K temperature range for the hydrothermally synthesized sample, while 0.9-1 was reached in the 425-525 K temperature range for the polyol (EG) sample. Considering the energy and time efficiency of the synthetic processes developed in this work, these are rather promising ZT values paving the way for a wider impact of these strategic materials with a minimum environmental impact.

Place, publisher, year, edition, pages
MDPI , 2021. Vol. 11, no 8, article id 2053
Keywords [en]
nanochemistry, bismuth telluride, thermoelectric, nanoparticles, colloidal synthesis, green chemistry, thermoelectric figure-of-merit, ZT, nanocharacterization, thermal conductivity
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-302035DOI: 10.3390/nano11082053ISI: 000689999000001PubMedID: 34443884Scopus ID: 2-s2.0-85112216137OAI: oai:DiVA.org:kth-302035DiVA, id: diva2:1595902
Note

QC 20210920

Available from: 2021-09-20 Created: 2021-09-20 Last updated: 2023-08-18Bibliographically approved
In thesis
1. Design, Synthesis and Characterization of Nanostructured Thermoelectric Materials
Open this publication in new window or tab >>Design, Synthesis and Characterization of Nanostructured Thermoelectric Materials
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The demand for energy is rapidly increasing, triggering more carbon emission and global warming. Alternative green energy sources are essential to secure the future generation from the effect of pollution and global warming. During the last few decades, thermoelectric (TE) materials gained interest, due to their capability of directly interconverting between heat and power, which can be used to convert waste heat to electricity.  One of the strategic TE adaptation approaches is to develop high efficiency TE materials from earth-abundant and non-toxic components. Not only the TE materials’ composition, but also the synthesis method, has to be environment friendly in order to create a green transition, with minimum adverse environmental impacts. Bottom-up microwave (MW) assisted synthesis routes, using water and polyalcohol as green solvents were demonstrated feasible to generate binary and ternary compositions of Bi2-xSbxTe3, which were effective in room temperature. A more earth abundant and environment friendly material composition, copper selenide (Cu2-XSe), effective at intermediate temperature regime (200-600 °C), was synthesized by MW-assisted thermolysis. The synthesized materials were characterized in terms of structure, microstructure, surface chemistry and TE transport properties, and showed significant improvement of TE performance compared to materials synthesized using conventional methods - mainly attributed to the preservation of nanostructure. Significant results have been achieved with improved material characteristics, while the time and the energy investment were substantially reduced. The developed processes with reduced time and carbon footprint offer excellent sustainable synthesis routes for large-scale synthesis of high-performance nanostructured TE materials as strategic energy materials. 

Abstract [sv]

Efterfrågan på energi ökar snabbt, vilket leder till mer koldioxidutsläpp och global uppvärmning. Alternativa gröna energikällor är nödvändigt för att skydda kommande generationer från effekterna av miljöföroreningar och global uppvärmning. Under de senaste decennierna har intresset för termoelektriska (TE) material ökat på grund av deras förmåga att direkt omvandla spillvärme till elektricitet. En av strategierna för TE-anpassning är att utveckla effektiva TE-material från i jordskorpan vanligt förekommande och ogiftig föreningar. Inte bara TE-materialens sammansättning, utan också hur de syntetiseras, bör vara miljövänligt för att skapa en grön övergång med minimal negativ miljöpåverkan. Grön mikrovågsassisterad botten upp syntes med vatten och sockeralkohol som lösningsmedel visades vara en möjlig metod för att generera binära och ternära föreningar av Bi2-xSbxTe3, vilka är effektiva vid rumstemperatur. Den i jordskorpan vanligt förekommande och miljövänliga kemiska föreningen kopparselenid (Cu2-XSe), vilken är effektivt vid mellantemperaturer (200-600°C), har syntetiseras genom MW-assisterad termolys. De syntetiserade materialen karakteriserades av deras struktur, mikrostruktur, ytkemi och termoelektriska transportegenskaper och visade betydande förbättringar av TE-prestanda jämfört med material syntetiserade med konventionella metoder, vilket primärt kan tillskrivas bevarandet av nanostrukturer. Betydande resultat har uppnåtts med överlägsna materialegenskaper, samtidigt som tid och energiåtgång reducerats avsevärt. Den utvecklade processen, med minskad tidsåtgång och koldioxidavtryck, erbjuder hållbara syntesvägar för storskalig syntes av effektiva TE-material med nanostrukturer för strategiska energimaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 75
Series
TRITA-SCI-FOU ; 2021:36
Keywords
Materials chemistry
National Category
Materials Chemistry
Research subject
Physics, Material and Nano Physics; Physics
Identifiers
urn:nbn:se:kth:diva-302383 (URN)978-91-8040-000-8 (ISBN)
Public defence
2021-10-15, BioX Library https://kth-se.zoom.us/j/63386528297, Albanova Universitetscentrum, Roslagstullsbacken 21, Stockholm och via zoom, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy AgencyEuropean Commission
Available from: 2021-09-22 Created: 2021-09-21 Last updated: 2022-06-25Bibliographically approved
2. Synthesis, Electrophoretic Deposition, and Characterization of Nanostructured Thermoelectric Materials
Open this publication in new window or tab >>Synthesis, Electrophoretic Deposition, and Characterization of Nanostructured Thermoelectric Materials
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The world’s increasing demand for energy and supplying this energy dominantlyfrom fossil fuels has a major impact on global climate change. Theenergy crisis has gotten more alarming in the recent years which increasedthe motivation for replacing fossil fuels with greener routes for energy harvest.There are various technologies developed for harvesting energy, andthe ability to recover energy from waste heat at a wide range of temperatures (from room temperature to more than 1000C) distinguished thethermoelectric (TE) materials from the rest. The drawback about the thermoelectricdevices is that they are too inefficient to be cost-effective in manyapplications, and the developments in nanotechnology is providing somesolutions to increase the efficiency of these materials and devices.

The field of thermoelectrics suffer from large discrepancy of theresults in the literature, which is generally attributed to the variations inthe materials qualities, urging a need for the development of synthetictechniques that can lead to large-scale TE materials in reasonable timeframe. In this thesis, three different routes for rapid, scalable, and energyefficient, wet-chemical synthetic techniques for bismuth chalcogenidecompounds are presented. Microwave assisted heating during reactionprovided better control over the particle properties while reducing thereaction time and carbon footprint of the synthetic method, leading tomaterials bismuth chalcogenides with promising TE transport propertiesin a scalable and reproducible manner.

Hybrid TE materials, and recently emerging solid-liquid TE materialsconcept, requires fabrication of porous TE films, to study the effect of variousinterfaces, including solid and liquid electrolytes. For this purpose, wedeveloped and optimized the electrophoretic deposition (EPD) process toprepare nanostructured porous TE films by preserving the size and morphologyof the as-synthesized bismuth chalcogenide particles. A new glass based substrate is designed and fabricated to study the electronic transportproperties of the electrically active films prepared via EPD. Using this platform,we could clearly demonstrate the significance of the synthetic methodon the surface chemistry and resultant transport properties of the TE materials.The methods and materials developed in this thesis are expected toimpact and expedite further developments in the field of thermoelectrics.

Abstract [sv]

Världens ökande efterfrågan på energi och att tillhandahålla denna energifrämst från fossila bränslen har en betydande inverkan på den globalaklimatförändringen. Energikrisen har blivit allt mer alarmerande de senasteåren, vilket har ökat motivationen att ersätta fossila bränslen med grönaenergilösningar. Det har utvecklats olika tekniker för energiutvinning, menförmågan att återvinna energi från spillvärme vid ett brett temperaturintervall(från rumstemperatur till över 1000 °C) skiljer termoelektriska (TE)material från övriga. Nackdelen med TE-enheter är att de är för ineffektivaför att vara kostnadseffektiva i många tillämpningar, där utvecklingen inomnanoteknik erbjuder vissa lösningar för att öka effektiviteten hos dessamaterial och enheter.

Inom området för TE-material finns det stora avvikelser i resultaten i litteraturen,vilket i allmänhet tillskrivs variationer i materialkvaliteten. Detfinns ett behov av att utveckla syntetiska tekniker som kan leda till högeffektivaTE-material i storskalig produktion på rimlig tid. I denna avhandlingpresenteras tre olika metoder för snabb, skalbar och energieffektiv våtkemisksyntetisering av bismutkalkogenidföreningar. Mikrovågsassisteraduppvärmning under reaktionen gav bättre kontroll över partikelegenskapernasamtidigt som reaktionstiden och koldioxidavtrycket för den syntetiskametoden minskade, vilket resulterade i bismutkalkogenider med lovandeTE-transportegenskaper på ett skalbart och reproducerbart sätt.

Hybrida TE-material och det nyligen framkomna konceptet med fastvätska-TE-material kräver framställning av porösa TE-filmer för att studeraeffekten av olika gränssnitt, inklusive fasta och flytande elektrolyter. Fördetta ändamål har vi utvecklat och optimerat elektroforesdepositionsprocessen(EPD) för att framställa nanostrukturerade porösa TE-filmer genomatt bevara storlek och morfologi hos de syntetiserade bismutkalkogenidpartiklarna. En ett nytt substrat baserat på glas har designats och tillverkats föratt studera de elektroniska transportegenskaperna hos de elektriskt aktivafilmerna som framställts via EPD. Med denna plattform kunde vi tydligt visabetydelsen av syntesmetoden för yt-kemin och de resulterande transportegenskapernahos TE-filmerna. De metoder och material som utvecklats idenna avhandling förväntas påverka och påskynda vidareutvecklingen inomforskningsområdet för TE-material.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023
Series
TRITA-SCI-FOU ; 2023:38
Keywords
Thermoelectric, Bismuth telluride, Antimony telluride, Hydrothermal synthesis, Thermolysis, Polyol, Electrophoretic deposition, EPD, Seebeck coefficient, Thermoelectric power factor, Colloidal stabilization
National Category
Nano Technology Materials Chemistry
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-334386 (URN)978-91-8040-651-2 (ISBN)
Public defence
2023-09-15, FA32, Roslagstullsbacken 21, Stockholm, 13:00
Opponent
Supervisors
Note

QC 2023-08-21

Available from: 2023-08-21 Created: 2023-08-18 Last updated: 2023-08-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Hamawandi, BejanBatili, HazalPaul, MoonKilic, Nuzhet InciToprak, Muhammet

Search in DiVA

By author/editor
Hamawandi, BejanBatili, HazalPaul, MoonKilic, Nuzhet InciKuchowicz, MaciejToprak, Muhammet
By organisation
Biomedical and X-ray PhysicsApplied PhysicsMaterials and Nanophysics
In the same journal
Nanomaterials
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 142 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf