kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Structural characterisation of amyloid-like fibrils formed by an amyloidogenic peptide segment of beta-lactoglobulin
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
Luleå Univ Technol, Chem Interfaces, Luleå, Sweden.;Kazan State Med Univ, Dept Med & Biol Phys, Kazan 420012, Russia..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry.
Show others and affiliations
2021 (English)In: RSC Advances, E-ISSN 2046-2069, Vol. 11, no 45, p. 27868-27879Article in journal (Refereed) Published
Abstract [en]

Protein nanofibrils (PNFs) represent a promising class of biobased nanomaterials for biomedical and materials science applications. In the design of such materials, a fundamental understanding of the structure-function relationship at both molecular and nanoscale levels is essential. Here we report investigations of the nanoscale morphology and molecular arrangement of amyloid-like PNFs of a synthetic peptide fragment consisting of residues 11-20 of the protein beta-lactoglobulin (beta-LG(11-20)), an important model system for PNF materials. Nanoscale fibril morphology was analysed by atomic force microscopy (AFM) that indicates the presence of polymorphic self-assembly of protofilaments. However, observation of a single set of C-13 and N-15 resonances in the solid-state NMR spectra for the beta-LG(11-20) fibrils suggests that the observed polymorphism originates from the assembly of protofilaments at the nanoscale but not from the molecular structure. The secondary structure and inter-residue proximities in the beta-LG(11-20) fibrils were probed using NMR experiments of the peptide with C-13- and N-15-labelled amino acid residues at selected positions. We can conclude that the peptides form parallel beta-sheets, but the NMR data was inconclusive regarding inter-sheet packing. Molecular dynamics simulations confirm the stability of parallel beta-sheets and suggest two preferred modes of packing. Comparison of molecular dynamics models with NMR data and calculated chemical shifts indicates that both packing models are possible.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY , 2021. Vol. 11, no 45, p. 27868-27879
National Category
Physical Chemistry Biochemistry Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-302632DOI: 10.1039/d1ra03575dISI: 000694655300013PubMedID: 35480736Scopus ID: 2-s2.0-85114733485OAI: oai:DiVA.org:kth-302632DiVA, id: diva2:1600244
Note

QC 20230516

Available from: 2021-10-04 Created: 2021-10-04 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Hierarchical Assembly Investigations and Multiscale Characterization of Protein-based Materials: Insights from Whey Protein Nanofibrils and Recombinant Spider Silk Microspheres
Open this publication in new window or tab >>Hierarchical Assembly Investigations and Multiscale Characterization of Protein-based Materials: Insights from Whey Protein Nanofibrils and Recombinant Spider Silk Microspheres
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Protein-based materials, with their unique properties of combining high strength, while maintaining elasticity, and their inherent biocompatibility, hold immense potential for various applications. In order to harness these properties, we need to understand and control how protein building blocks come together to form hierarchically structured materials. Using critical thinking when combining different proteins may lead to advanced materials with synergistic effects that can tackle complex problems such as targeted drug delivery. This thesis presents an investigation into the behavior of some protein-based materials, specifically whey protein isolate nanofibrils, β-lactoglobulin peptide fragment assemblies, and recombinant spider silk microspheres.

In Paper I, the hierarchical assembly and packing behavior of whey protein nanofibrils were in situ investigated using a Liquid Bridge Induced Assembly setup and X-ray Scattering, along with Atomic Force Microscopy and Scanning Electron Microscopy. The results demonstrated that the alignment of straight and curved fibrils was affected by temperature and fibril size, providing insights into assembly dynamics for future material production.

In Paper II, the impact of nanoscale features of whey protein nanofibrils on the morphology of films was investigated. It was found that controlling fibril size and employing fast-drying protocols could manipulate macroscale features without sacrificing the functional properties of the nanofibrils.

In Paper III, the nanoscale morphology, molecular arrangement, and polymorphism of protein nanofibrils formed by a synthetic peptide fragment derived from β-lactoglobulin were examined. Β-lactoglobulin is the only nanofibril forming component in whey protein isolate. Results suggested that polymorphism stems from protofilament packing differences at the nanoscale, and a possible parallel steric zipper packing.

In Paper IV, the self-assembly behavior of a recombinant spider silk protein in physiological like buffer and with the addition of hyaluronic acid was explored. The self-assembled FN-silk microspheres demonstrated a fibrillar or porous mesostructure. 2D and 3D cell culture trials show that the microspheres could have potential applications in biomedicine.

Taken together, the acquired knowledge will contribute to our fundamental understanding of protein-based materials, especially those similar to PNF-based and recombinant spider silk-based materials and inform the design of improved and innovative materials in biomanufacturing, such as functional textiles and surface biofunctionalization.

Abstract [sv]

Proteinbaserade material med sin unika kombination av styrka, elasticitet och biokompatibilitet har enorm potential för tillämpningar inom olika branscher. För att utnyttja dessa egenskaper måste vi förstå och kontrollera hur proteinbyggstenar sammanfogas för att bilda hierarkiskt strukturerade material. Samtidigt kan kombinationen av olika proteiner med kritiskt tänkande leda till avancerade material med synergistiska effekter som kan ta itu med komplexa problem som in vitro-vävnadsutveckling. Denna avhandling presenterar en undersökning av beteendet hos vissa proteinbaserade material, specifikt vassleproteinisolat (WPI) proteinnanofibriller (PNF), β-laktoglobulinprotein peptidfragmentförsamlingar och rekombinerade spindelsilkesmikrosfärer.

 

I Artikel I undersöktes den hierarkiska sammansättningen och packningsbeteendet hos WPI-nanofibrer med hjälp av en Liquid Bridge Induced Assembly (LBIA) uppställning. Resultaten visade att inriktningen av raka och böjda fibrer påverkades av temperatur och storlek vilket ger insikter i sammansättningsdynamiken för framtida materialproduktion. 

I Artikel II studerades effekten av WPI PNFs nanoskaliga funktioner på filmernas morfologi. Det visade sig att kontroll av fibrilstorlek och användning av snabbtorkningsprotokoll kunde manipulera makroskaliga funktioner utan att offra de funktionella egenskaperna hos PNF:erna.

I Artikel III undersöktes nanoskalig morfologi, molekylärt arrangemang och polymorfism hos PNF:er bildade av ett syntetiskt peptidfragment härstammande från β-laktoglobulinprotein (β-LG11–20). Resultaten tyder på att polymorfismen härrör från protofilament packningsdifferenser på nanoskalan. 

I Artikel IV utforskades självmonteringsbeteendet hos FN-silke i fysiologisk liknande buffert och i hyaluronsyralösning. FN-silkesmikrosfärerna visade en fibrillär eller porös mesostruktur, med potentiella tillämpningar inom optimering av cellkulturer och läkemedelsleverans.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 111
Series
TRITA-CBH-FOU ; 2023:26
Keywords
Hierarchical Assembly, Protein-based materials, Whey Protein Nanofibrils, β-Lactoglobulin, Recombinant Spider Silk, Microspheres, Biomedical Applications, Surface Biofunctionalization, Hierarkisk montering, Proteinbaserade material, Vassleprotein nanofibriller, β-Laktoglobulin, Rekombinant spindelsilke Mikrosfärer, Biomedicinska tillämpningar, Ytbiokonjugering
National Category
Biomaterials Science
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-327026 (URN)978-91-8040-624-6 (ISBN)
Public defence
2023-06-15, E3, Osquars backe 2, KTH Main Campus, Zoom: https://kth-se.zoom.us/j/69776330962, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2023-05-17

Available from: 2023-05-17 Created: 2023-05-17 Last updated: 2023-06-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Gowda, VasanthaBiler, MichalOrnithopoulou, EiriniLinares, MathieuLendel, Christofer

Search in DiVA

By author/editor
Gowda, VasanthaBiler, MichalMantonico, Malisa, VOrnithopoulou, EiriniLinares, MathieuLendel, Christofer
By organisation
Applied Physical ChemistryTheoretical Chemistry and BiologyChemistry
In the same journal
RSC Advances
Physical ChemistryBiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 150 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf