kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Morphology and mechanisms of cavitation damage on lamellar gray iron surfaces
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Properties.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Properties.ORCID iD: 0000-0002-2230-5097
2020 (English)In: Wear, ISSN 0043-1648, E-ISSN 1873-2577, Vol. 456-457, p. 203324-203324, article id 203324Article in journal (Refereed) Published
Abstract [en]

Engine parts in contact with liquids may suffer cavitation erosion damage. Understanding its mechanisms in realistic operating environments is necessary for improvements in the service life and durability of materials for heavy-duty diesel engines. This work illustrates the cavitation erosion behavior of a cylinder liner material with a follow-up of detailed, high-magnification SEM images of damaged sites on the surface. The cylinder liner encloses the piston and combustion chamber in the engine of large trucks and its material of choice is usually a lamellar gray cast iron, its microstructure consisting of flake-shaped graphite, a pearlitic matrix and some steadite. Testing was carried out using an ultrasonic vibratory apparatus, and the liquid of choice was a commercial engine coolant composed of water, glycol and inhibitors. Based on observations of tested surfaces, a sequence of damage patterns is proposed as an explanation of the material’s cavitation erosion behavior. Initiation consists of: chipping at graphite cluster centers, graphite flake removal, pitting along graphite flakes and direct matrix pitting. Development consists of: evolution of chipped spots into matrix-damaging pits, radial pit expansion, pit merging and surface roughening. It can be concluded that presence and morphology of graphite are critical to the cavitation erosion behavior of LGI.

Place, publisher, year, edition, pages
Elsevier BV , 2020. Vol. 456-457, p. 203324-203324, article id 203324
Keywords [en]
Cavitation erosion, Lamellar cast iron, Flake graphite
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-303403DOI: 10.1016/j.wear.2020.203324ISI: 000566800600003Scopus ID: 2-s2.0-85086114699OAI: oai:DiVA.org:kth-303403DiVA, id: diva2:1602840
Note

QC 20211018

Available from: 2021-10-13 Created: 2021-10-13 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Cavitation Erosion Mechanisms in Cast Irons
Open this publication in new window or tab >>Cavitation Erosion Mechanisms in Cast Irons
2021 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The research presented in this thesis investigated the mechanisms by which cavitation erosion damage develops in lamellar graphite iron (LGI) and austempered ductile irons (ADIs). This has been achieved by image sequences of surface erosion on test samples in tandem with weight change measurements. Cavitation erosion is caused by the appearance and collapse of bubbles in a liquid which undergoes rapid pressure oscillations. Imploding bubbles release heat, shockwaves and high-speed microjets which may strike nearby solid walls and damage them.

The heavy-duty automotive industry encounters this problem in the engine cooling system. The combustion chamber requires precise temperature control for optimal operation and excess heat must be removed by a liquid coolant. In trucks, the coolant liquid achieves this by circulating around the cylinder liner, a hollow cylindrical part that encloses the combustion chamber and prevents its gases from escaping. However, the engine’s intense vibrations create repeated pressure variations in the coolant, and bubbling ensues. With prolonged operation, the cylinder liner’s wet outer wall may be severely worn, resulting in surface roughening, eroded patches and pits. Cavitation is responsible for great losses due to vehicle downtime and maintenance costs. The present work aims, therefore, at analyzing the behavior under cavitation exposure of cast irons that are currently used, or being considered for use, in the cooling system.

Cylinder liners are currently made of lamellar graphite iron with a matrix structure consisting of pearlite and a network of steadite, and the analysis for this material has been presented in Paper 1. Austempered ductile irons are candidate materials for pumps and other components of the cooling system due to their very good mechanical properties; three ADIs of increasing hardness, obtained from different heat treatments of a spheroidal graphite iron, have been analyzed in Paper 2. Experiments consisted of an ultrasonic vibratory probe to which material samples were attached and subsequently immersed in a beaker containing engine coolant. The samples were weighed and photographed in an SEM after several predetermined time intervals. This produced a detailed sequence of images which, in combination with mass loss data, can explain the mechanisms by which cavitation damage initiates and develops in these materials. The text of this thesis summarizes the findings presented in the appended articles and compares the behavior of LGI and ADI.

Abstract [sv]

Forskningen som presenteras i denna avhandling undersöker kavitationsmekanismerna och uppkomsten av kavitationsskador i gjutjärn med fjällgrafit (LGI) och i ausferritiskt segjärn (ADI). Detta har gjorts med sekventiell

fotografering av yterosionen på prover samtidigt som viktsförlusten har registre- rats.

Kavitationserosion uppstår genom bildning och kollaps av bubblor i en vätska som utsätts för snabba tryckoscillationer. Imploderande bubblor frigör värme, chockvågor och höghastighets- mikrojetstrålar som kan träffa närliggande fasta ytor och skada dessa.

Den tunga fordonsindustrin stöter på detta problem bland annat i motorernas kylsystem. Förbränningsrummet fordrar noggrann temperaturkontroll för optimal förbränning och måste kylas av en kylvätska. I lastbilar cirkuleras kylmedlet runt cylinderfodret, en ihålig, cylindrisk komponent som omsluter förbränningskammaren och som hindrar gaser från att lämna systemet. På grund av motorns intensiva vibrationer bildas återkommande tryckvariationer i kylvätskan med uppkomst av bubblor. Efter lång tid i drift kan cylinderfodrets våta utsida bli allvarligt eroderad med ökad ytråhet och med bildande av erosionmönster och erosionsgropar. Kavitation är förknippad med stora förluster pga stillestånd och underhållskostnader. Målet med detta arbete är därför att analysera hur nuvarande, och kandiderande gjutjärn för kylsystem, beter sig under kavitationsexponering.

Cylinderfoder görs för närvarande av lamellärt gjutjärn med en matrisstruktur av perlit och ett nätverk av steadit, och en analys av detta material presenteras i artikel 1. Ausferritiska segjärn är kandidatmaterial för pumpar och andra komponenter i kylsystemet pga sina goda mekaniska egenskaper. Tre ausferritiska segjärn med sfärisk grafit och successivt ökande hårdhet, från tre olika värmebehandlingar av samma segjärnsbatch analyseras i artikel 2. Experimenten bestod av ett ultraljudshorn till vilket prover fästes och därefter sänktes ner i en bägare med kylvätska. Proven vägdes och fotograferades i SEM enligt förutbestämda tidsintervall. Detta resulterade i en detaljerad sekvens med bilder som, i kombination med viktsförlusten, kan förklara mekanismerna för initiering och utveckling av kavitationsskador i nämnda material. Avhandlingen summerar fynden som presenteras i de bifogade artiklarna och jämför beteendena mellan LGI och ADI.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 71
Series
TRITA-ITM-AVL ; 2021:45
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-303477 (URN)978-91-8040-030-5 (ISBN)
Presentation
2021-11-04, https://kth-se.zoom.us/j/63461620700, Brinellvägen 23, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20211108

Available from: 2021-10-14 Created: 2021-10-14 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Freitas de Abreu, MarcioJonsson, Stefan

Search in DiVA

By author/editor
Freitas de Abreu, MarcioJonsson, Stefan
By organisation
Properties
In the same journal
Wear
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 152 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf