kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-6854-1423
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-9201-0454
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0003-0551-7976
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-5672-5727
Show others and affiliations
2021 (English)In: Nanomaterials, E-ISSN 2079-4991, Vol. 11, no 9, article id 2165Article in journal (Refereed) Published
Abstract [en]

Nanoparticle (NP)-based contrast agents enabling different imaging modalities are sought for non-invasive bio-diagnostics. A hybrid material, combining optical and X-ray fluorescence is presented as a bioimaging contrast agent. Core NPs based on metallic rhodium (Rh) have been demonstrated to be potential X-ray Fluorescence Computed Tomography (XFCT) contrast agents. Microwave-assisted hydrothermal method is used for NP synthesis, yielding large-scale NPs within a significantly short reaction time. Rh NP synthesis is performed by using a custom designed sugar ligand (LODAN), constituting a strong reducing agent in aqueous solution, which yields NPs with primary amines as surface functional groups. The amino groups on Rh NPs are used to directly conjugate excitation-independent nitrogen-doped carbon quantum dots (CQDs), which are synthesized through citrate pyrolysis in ammonia solution. CQDs provided the Rh NPs with optical fluorescence properties and improved their biocompatibility, as demonstrated in vitro by Real-Time Cell Analysis (RTCA) on a macrophage cell line (RAW 264.7). The multimodal characteristics of the hybrid NPs are confirmed with confocal microscopy, and X-ray Fluorescence (XRF) phantom experiments.

Place, publisher, year, edition, pages
MDPI AG , 2021. Vol. 11, no 9, article id 2165
Keywords [en]
X-ray fluorescence, carbon quantum dots, contrast agents, dual-mode imaging, nanomedicine, hybrid nanostructure, bio-imaging
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:kth:diva-303549DOI: 10.3390/nano11092165ISI: 000701522300001PubMedID: 34578481Scopus ID: 2-s2.0-85120871654OAI: oai:DiVA.org:kth-303549DiVA, id: diva2:1603853
Note

QC 20211018

Available from: 2021-10-18 Created: 2021-10-18 Last updated: 2024-02-22Bibliographically approved
In thesis
1. Preclinical X-Ray Fluorescence Imaging with Multifunctional Nanoparticles
Open this publication in new window or tab >>Preclinical X-Ray Fluorescence Imaging with Multifunctional Nanoparticles
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

X-ray fluorescence imaging (XFI) is an emerging technique for preclinical studies, characterized by high resolution, specificity, and sensitivity. It relies on nanoparticles (NPs) as contrast agents, which must be constituted of specific elements that match the X-ray source energy for detection. Laboratory liquid metal-jet X-ray sources enable compact in vivo XFI, thereby extending the accessibility of this imaging technique beyond synchrotron facilities.

When designing NPs as contrast agents, biocompatibility is essential for both preclinical and clinical imaging, often requiring a passivating biocompatible coating on the NP surface. The NP cores can provide contrast by their elemental composition, while coating, conjugation, and decoration strategies can add other functionalities and improve biocompatibility.

In this thesis, multifunctional NPs are designed to extend the functionality of XFI contrast agents by incorporating optically fluorescent or magnetically active components: conjugated carbon quantum dots, dye-doped silica shell, and decorated superparamagnetic iron oxide NPs. The designed multifunctional NPs allow correlative and multiscale imaging with complementary techniques such as confocal optical microscopy or magnetic resonance imaging (MRI). Furthermore, these NPs also facilitate more comprehensive studies on NP pharmacokinetics, paving the way for more robust investigations in the field of nanomedicine.

The benefits of multifunctional NPs are demonstrated with two approaches. First, in vivo correlative imaging with MRI and XFI is shown to reduce false positives caused by MRI artifacts in the lungs and abdomen. Second, XFI is employed to enable rapid NP bioengineering, by iteratively improving NP properties and administration strategies for passive tumor targeting. Optical and X-ray fluorescent multifunctional NPs enable the co-localization of NPs at both macroscopic and microscopic levels with XFI and confocal microscopy, correlating NP accumulation in organs with NP-cell interactions. These results highlight the role of XFI in the field of nanomedicine, with potential applications in pharmacokinetics, tumor targeting, treatment monitoring, and the development of medical devices.

Abstract [sv]

Röntgenfluorescensavbildning (RFA) är en växande teknik för prekliniska studier, och karakteriseras av hög upplösning, specificitet och känslighet. RFA använder nanopartiklar (NP:ar) som kontrastmedel, vilket måste innehålla specifika element som matchar röntgenkällans energi. Röntgenkällor med flytande metallstråleteknik möjliggör kompakt in vivo RFA i laboratorier, vilket gör denna avbildningsteknik tillgänglig även utanför synkrotronanläggningar.

Vid utformningen av NP:ar som kontrastmedel är biokompatibilitet avgörande betydelse både för preklinisk och klinisk avbildning, vilket ofta kräver ett passiverande biokompatibelt skikt på NP-ytan. NP-kärnorna kan ge kontrast genom sin grundämnessammansättning, medan beläggnings-, konjugerings- och dekorationsstrategier kan lägga till andra funktionaliteter och förbättra biokompatibiliteten.

I denna avhandling syntetiseras multifunktionella NP:ar för att utöka funktionaliteten hos RFA-kontrastmedel genom att inkorporera optiskt fluorescerande eller magnetiskt aktiva komponenter: konjugerade kolkvantprickar, färgämnesdopat  kiseldioxidskal och dekorerade superparamagnetiska järnoxid NP:ar. De utformade multifunktionella NP:arna möjliggör korrelativ avbildning med kompletterande tekniker som konfokal optisk mikroskopi eller magnetisk resonanstomografi (MR). Dessutom underlättar dessa NP:ar också mer omfattande studier av NP-farmakokinetik, vilket banar väg för bättre underbyggda undersökningar inom nanomedicin.

Fördelarna med multifunktionella NP:ar demonstreras med två tillvägagångssätt. För det första har in vivo korrelativ avbildning med MR och RFA visat sig minska antalet falska positiva resultat orsakade av MR-artefakter i lungorna och buken. För det andra används RFA för att möjliggöra snabb utveckling och design av NP:ar, genom att iterativt förbättra NP-egenskaper och administreringsstrategier för passiv ansamling i tumörer. Optiska och röntgenfluorescerande multifunktionella NP:ar möjliggör samlokalisering av NP:ar på både makroskopisk och mikroskopisk nivå med RFA och konfokal mikroskopi, vilket korrelerar NP-ackumuleringar i organ med NP-cellinteraktioner. Dessa resultat belyser RFA:s roll inom nanomedicinfältet, med dess potentiella tillämpningar inom farmakokinetik, tumörmålsökning, behandlingsövervakning och utveckling av medicinska instrument.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:07
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Physics, Biological and Biomedical Physics
Identifiers
urn:nbn:se:kth:diva-343804 (URN)978-91-8040-841-7 (ISBN)
Public defence
2024-03-22, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 240227

Available from: 2024-02-27 Created: 2024-02-22 Last updated: 2024-02-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Saladino, GiovanniKilic, Nüzhet InciBrodin, BerthaHamawandi, BejanHertz, HansToprak, Muhammet

Search in DiVA

By author/editor
Saladino, GiovanniKilic, Nüzhet InciBrodin, BerthaHamawandi, BejanHertz, HansToprak, Muhammet
By organisation
Biomedical and X-ray Physics
In the same journal
Nanomaterials
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 122 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf