Since the 1950s, robotics research has sought to build a general-purpose agent capable of autonomous, open-ended interaction with realistic, unconstrained environments. Cognition is perceived to be at the core of this process, yet understan#ding has been challenged because cognition is referred to differently within and across research areas, and is not clearly defined. The classic robotics approach is decomposition into functional modules which perform planning, reasoning, and problem solving or provide input to these mechanisms. Although advancements have been made and numerous success stories reported in specific niches, this systems-engineering approach has not succeeded in building such a cognitive agent. The emergence of an action-oriented paradigm oilers a new approach: action and perception are no longer separable into functional modules but must be considered in a complete loop. This chapter reviews work on different mechanisms for action-perception learning and discusses the role of embodiment in the design of the underlying representations and learning. It discusses the evaluation of agents and suggests the development of a new embodied Turing lest. Appropriate scenarios need to be devised in addition to current competitions, so that abilities can be tested over long time periods.
QC 20211021