Open this publication in new window or tab >>2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Photoelectrochemical (PEC) water splitting is a promising technology for converting solar energy into green hydrogen. The development of highly efficient, robust and cost-effective photoanodes has been established to be of essential importance for PEC water oxidation. BiVO4 has been deemed as one of the most up-and-coming metal oxide-based photoanode materials for PEC water splitting. Development of new surface engineering techniques for BiVO4 is therefore the subject of this thesis.
In Chapter 1, a general introduction that centers on the solar fuel production by BiVO4-based PEC cells is presented. It concerns the working principles of PEC systems, current status of BiVO4-based photoanodes, and modification strategies for enhancement of the PEC activity.
In Chapter 2, the characterization methods used in this thesis and the preparation of BiVO4 photoelectrode are introduced.
In Chapter 3, a postsynthetic borate treatment is developed to decorate the BiVO4 surface. The PEC performance of as-prepared B-BiVO4 photoanode is evaluated and the mechanism of the PEC enhancement is subsequently investigated. Moreover, the layered double hydroxide-based cocatalyst is integrated with the B-BiVO4 substrate. The synergistic effects of borate treatment and cocatalyst on improvement of the PEC activity are discussed.
In Chapter 4, a conjugated microporous polymer-based heterogeneous catalyst is applied to the surface modification of BiVO4. The PEC performance of the BiVO4/eCMP-Co hybrid photoanode is discussed. Furthermore, the origin of the PEC enhancement is investigated by charge kinetics studies.
In Chapter 5, a metal-organic complex, cobalt phytate, is introduced on BiVO4 by photo-assisted electrodeposition in the form of an ultra-thin nanolayer. The PEC performance of the BiVO4/CoPhy integrated photoanode and the role of CoPhy in interfacial charge transfer is investigated.
Abstract [sv]
Fotoelektrokemisk (PEC) vattensplittring är en lovande teknik för att omvandla solenergi till grön vätgas. Utvecklingen av effektiva, robusta och kostnadseffektiva fotoanoder har fastställts vara av avgörande betydelse för PEC-baserad vattenoxidation. BiVO4 har ansetts vara ett av de mest framväxande metalloxidbaserade fotoanodmaterialen för PEC-baserad vattenoxidation. Att utveckla nya tekniker för ytmodifiering på BiVO4 är därför ämnet för denna avhandling.
I kapitel 1 presenteras en allmän introduktion som fokuserar på produktion av solbränsle med BiVO4-baserade PEC-celler. Kapitlet beskriver arbetsprinciperna för PEC-system, nuvarande status för BiVO4-baserade fotoanoder och modifieringsstrategier för att förbättra PEC-aktiviteten.
I kapitel 2 introduceras de karakteriseringsmetoder som används i denna avhandling och tillverkningen av BiVO4-baserade fotoelektroder.
I kapitel 3 utvecklas en postsyntetisk boratbehandling för att dekorera BiVO4-ytan på molekylär nivå. PEC-prestandan för den beredda B-BiVO4-fotoanoden utvärderas och mekanismen för PEC-förbättring undersöks därefter. Dessutom är en skiktad dubbelhydroxidbaserad co-katalysator integrerad med B-BiVO4-substratet. Dessutom diskuteras de synergistiska effekterna av boratbehandlingen och co-katalysatorn på förbättring av PEC-aktiviteten.
I kapitel 4 appliceras en konjugerad mikroporös polymerbaserad heterogen katalysator för ytmodifiering av BiVO4. PEC-prestandan för BiVO4/eCMP-Co hybrid fotoanoden diskuteras. Sedan undersöks ursprunget till PEC-förbättringen med hjälp av laddningskinetikstudier.
I kapitel 5 introduceras ett organisk-metall komplex, koboltfytat, på BiVO4 genom fotoassisterad elektrodeponering i form av ett ultratunt nanolager. PEC-prestandan för den BiVO4/CoPhy integrerade fotoanoden och rollen för CoPhy vid gränssnitt laddningsöverföring undersöks också.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2021. p. 93
Series
TRITA-CBH-FOU ; 2021:50
Keywords
photoelectrochemical water splitting, photoanodes, bismuth vanadate, surface engineering
National Category
Chemical Sciences
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-304235 (URN)978-91-8040-061-9 (ISBN)
Public defence
2021-12-03, F3, KTH campus, Lindstedtsvägen 26, and via Zoom: https://kth-se.zoom.us/j/66726191042, Stockholm, 10:00 (English)
Opponent
Supervisors
Note
QC 2021-11-03
2021-11-032021-11-032022-09-21Bibliographically approved