Open this publication in new window or tab >>
2021 (English) Doctoral thesis, comprehensive summary (Other academic)
Abstract [en] Redesigning polymeric materials and rethinking their use is imperative in the prospect of a more sustainable future. Critical aspects in this endeavor are the use of renewable monomers to decrease the environmental footprint, implementing green syntheses and production processes and the design for increased recyclability as an end-of-life option to diverge from the generation of plastic waste. In this thesis, polyamides and polyhydroxyurethanes were synthesized employing biobased and structurally diverse monomers. Through ring-opening aminolysis and ring-opening polymerization, solvent- and toxic reagent-free, atom-economical and energy efficient systems could be realized. Ethylene brassylate, a fatty acid-derived macrodilactone, was employed for the synthesis of permanent and dynamic polyamide networks, carried out in a single step and under mild temperature, by leveraging the inherent properties of the monomer. Carbon dioxide and its derivatives were explored for the preparation of diverse cyclic carbonates serving as precursors to dynamic polyhydroxyurethane networks and copolymers with complex architecture. The permanent polyamide networks were semicrystalline and exhibited a shape-memory effect with high fixicity and recovery ratio. The dynamic polyamide and polyhydroxyurethane networks were realized by a common strategy that introduced exchangeable disulfide bonds into them. The networks were reprocessable from one to three cycles after damage, and a profile of properties (thermal, mechanical, viscoelastic and dynamic) was achieved by varying the crosslink density and the structure of the monomers used. A linear polyhydroxyurethane was carefully designed to enable its dissolution in ε-Caprolactone, which under appropriate conditions, facilitated its solvent-free ring-opening polymerization from the pendent hydroxy groups of the polymer. The resulting graft copolymers had tunable molar mass and the system was not limited by the bulk polymerization conditions.
Abstract [sv] För en hållbar framtid behöver vi ändra sättet på vilket vi designar och skapar nya polymera material och även hur vi använder dem. För en lyckad omställning behöver vi öka användandet av förnybara råvaror, applicera principerna för grön kemi i deras syntes och produktionsprocesser samt designa material för en ökad återvinningsbarhet efter användning, detta för att minska materialens miljöpåverkan och mängden plastavfall som genereras. I denna avhandling har tvärbundna nätverk och sampolymerer med komplex arkitektur, innehållande amid- och uretanbindningar, syntetiserats. Detta gjordes på ett atomekonomiskt och energieffektivt sätt, utan lösningsmedel eller giftiga reagens, genom ringöppningsaminolys och ringöppningspolymerisation av biobaserade monomerer. Etylenbrassylat, som är en fettsyrabaserad makrodilakton, användes för att skapa både permanenta och dynamiska polyamidnätverk, en syntes som kunde utföras i ett steg vid låg temperatur. Koldioxid och dess derivat utforskades för framställning av olika cykliska karbonater, som sedan användes som byggstenar i dynamiska polyhydroxyuretanätverk och sampolymerer med komplex arkitektur. De permanenta polyamidnätverken var delkristallina och uppvisade en minneseffekt, och hade därmed vid en termparaturförändring god förmåga att återfå sin ursprungliga form. De dynamiska polyamid- och polyhydroxyuretanätverken innehöll disulfidbindningar, och därmed var nätverken helt ombearbetningsbara efter att de skadats. Beroende på deras tvärbindningstäthet och strukturen hos de använda monomererna kunde deras termiska, mekaniska, viskoelastiska och dynamiska egenskaper varieras. En linjär polyhydroxyuretan utformades för att vara löslig i ε-kaprolakton, vilket möjliggjorde en lösningsmedelsfri ringöppningspolymerisation från polyhudroxyuretanens hydroxylgrupper. De skapade ympsampolymerernas molekylvikt kunde varieras och reaktionen begränsades inte av de lösningsmedelsfria betingelserna.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 74
Series
TRITA-CBH-FOU ; 2021:52
Keywords polyamide, polyhydroxyurethane, polyester, ring-opening aminolysis, ring-opening polymerization, covalent adaptable network, copolymer, complex architecture, polyamid, polyhydroxyuretan, polyester, ringöppningsaminolys, ringöppningspolymerisation, dynamiska nätverk, sampolymer, komplex arkitektur
National Category
Polymer Chemistry
Research subject
Fibre and Polymer Science
Identifiers urn:nbn:se:kth:diva-304349 (URN) 978-91-8040-059-6 (ISBN)
Public defence
2021-12-10, F3, Lindstedtsvägen 26, and via Zoom: https://kth-se.zoom.us/j/62270797340, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder Swedish Research Council Formas, 2016-00700
Note QC 2021-11-03
2021-11-032021-11-022022-12-10 Bibliographically approved