Open this publication in new window or tab >>
2021 (English) Doctoral thesis, comprehensive summary (Other academic)
Abstract [en] Cell membranes need to change their shapes during many cellular processeslike protein trafficking, cytokinesis and membrane homeostasis. The lattershuttles lipids, synthesized in the endoplasmic reticulum, to all membranouscompartments. Bin/Amphiphysin/Rvs (BAR) proteins are peripheralmembrane proteins (PMP) and play an important role in sculpturingmembranes and in the regulation of actin dynamics. Cryo-electronmicroscopy (cryoEM) has emerged as a powerful tool to visualize proteinsat the membrane interface. Here, we employed transmission electronmicroscopy and other biophysical methods to elucidate how BAR domainproteins steer processes at the membrane.In this work we studied the BAR protein bridging integrator 1 (BIN1), whichhas an established role in cancer, Alzheimer’s disease and skeletalmyopathies. To obtain information about BIN1’s interaction with themembrane in near native environments, we used artificial lipid systems suchas liposomes and lipids nanotubes.First, we have shown that electrostatic interactions are more important forBIN1 when binding to membranes with low curvature. At high curvature,binding is likely driven by non-polar interactions. The formation ofinvaginations (or tubules) is regulated by the composition of negativecharged lipids in membrane bilayer or electrostatic residues on the BARdomain. Therefore electrostatic interactions regulate recruitment andcrowding of BIN1; and consequently membrane deformation.Second, we clarified BIN1’s role in actin dynamics. CryoEM reveals that themuscular BIN1 isoform does not bind to single actin filaments, althoughBIN1 can be co-sedimented with actin after polymerization of actin. Thisimplies that BIN1 rather bundles actin than decorates single filaments.Third, we explored a strategy to purify an aggregation prone BAR protein.Aggregation is a property common in Peripheral Membrane Proteins. Thenovel NT* tag is derived from a spider silk protein and was reported to be apromising fusion tag for protein purification. We showed that the NT* tagimproves the solubility and reduces the aggregation of the BAR proteinFAM92A1. The activity of purified FAM92A1-NT* was verified bynegative stain EM.IIFourth, we were interested in the regulation of the lipid metabolism. PyruvateCarboxylase (PC) is a pivotal enzyme to generate lipid precursors. Cellbiological assays identified a long non-coding (lnc) RNA that regulates theactivity of PC. We studied the interaction between the lnc RNA and PC bybiophysical techniques. Size exclusion chromatography confirmed thepresence lncRNA-PC complex in vitro.
Abstract [sv] Cellmembran måste ändra form under många cellulära processer såsom proteintrafficking, cytokines och membranhomeostas. Den senare överför fettmolekyler, syntetiserade i det endoplasmatiska retikulet, till alla inre membranomslutna rum. Bin/Amfilysin/Rvs (BAR)-proteinerna är perifera membranproteiner (PMP) vilka spelar stor roll i att skulptera membran samt i regleringen av aktindynamik. Kryo-elektronmikroskopi (kryoEM) har utvecklats till ett kraftfullt verktyg för visualisering av proteiner på membrangränssnitt. I det följande beskrivs hur transmissionselektronmikroskopi och andra biofysikaliska metoder använts för att belysa hur BAR proteiner styr processer på membranet. I detta arbete studerades BAR proteinet brobyggande integrator 1 (BIN1) vilket har en etablerad roll i cancer, Alzheimers sjukdom och myopatier i skelettet. För att erhålla information om BIN1’s interaktion med membranet i så membranlika förhållanden som möjligt användes artificiella lipidsystem såsom liposomer och nanorör. För det första, vi har visat att elektrostatiska interaktioner är viktigare för BIN1 vid bindning på membran med låg kurvatur. Vid hög kurvatur drivs bindningen sannolikt av icke-polära interaktioner. Bildningen av invaginationer (eller av tubuler) regleras av konstellationen av negativt laddade lipider i membranets dubbelskikt eller av elektrostatiska aminosyror i BAR-domänen. Därmed reglerar elektrostatiska interaktioner rekryteringen av BIN1 och hur BIN1 flockas på membranet och den därigenom påföljande membrandeformationen. För det andra, vi har klargjort den roll BIN1 har i aktinets dynamik. KryoEM avslöjar att den muskulära BIN1-isoformen inte binder till fria aktinfilament trots att BIN1 kan med-sedimenteras med aktin efter polymerisering af aktin. Detta innebär att BIN1 företrädesvis buntar ihop aktin snarare än dekorerar fria filament. För det tredje, vi utforskade en strategi för att rena ett aggregationsbenäget BAR-protein. Aggregering är en vanlig egenskap hos perifera membranproteiner. En lovande fusionstag för proteinrening har rapporterats vara den så kallade NT*-taggen, nyligen utvecklad från spindeltrådsprotein. Vi visade att NT*-taggen förbättrar lösligheten och minskar aggregeringen IV av BAR proteinet FAM92A1. Aktiviteten hos det renade FAM92A1-NT* verifierades med negativ-färgnings EM. För det fjärde, vi var intresserade av lipidmetabolismens reglering. Enzymet pyruvat karboxylas (PC) är ett nav i generering av lipidprekursorer. Cellbiologiska analyser identifierade ett långt icke-kodande (long noncoding, lnc) RNA vilket reglerar aktiviteten av PC. Vi studerade interaktionen mellan lnc RNA och PC med biofysiska tekniker. Storleksexkluderings-kromatografi bekräftade förekomsten av komplexet lncRNA-PC in vitro.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2021. p. 41
Series
TRITA-CBH-FOU ; 2021:55
Keywords peripheral membrane protein (PMP), BAR protein, membrane curvature, actin dynamic, transmission electron microscopy, liposomes
National Category
Medical and Health Sciences
Research subject
Technology and Health
Identifiers urn:nbn:se:kth:diva-304511 (URN) 978-91-8040-011-4 (ISBN)
Public defence
2021-11-30, T4, Hälsovägen 11C, Huddinge or via Zoom: https://kth-se.zoom.us/webinar/register/WN_OUJ0PAIBRV2mwu6H_91c2w, Stockholm, 10:00 (English)
Opponent
Supervisors
Note QC 2021-11-05
2021-11-052021-11-052022-06-25 Bibliographically approved