kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ImSwitch: Generalizing microscope control in Python
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. (Ilaria Testa)ORCID iD: 0000-0002-9583-9022
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab. (Ilaria Testa)ORCID iD: 0000-0002-3554-9322
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. (Ilaria Testa)ORCID iD: 0000-0001-9302-7576
Show others and affiliations
2021 (English)In: Journal of Open Source Software, E-ISSN 2475-9066, Vol. 6, no 64, article id 3394Article in journal (Refereed) Published
Abstract [en]

The constant development of novel microscopy methods with an increased number of dedicated hardware devices poses significant challenges to software development. On the onehand, software should control complex instruments, provide flexibility to adapt between different microscope modalities, and be open and resilient to modification and extension byusers and developers. On the other hand, the community needs software that can satisfy therequirements of the users, such as a user-friendly interface and robustness of the code. In this context, we present ImSwitch, based on the model-view-presenter (MVP) design pattern (Potel, 1996), with an architecture that uses polymorphism to provide a generalized solutionto microscope control. Consequently, ImSwitch makes it possible to adapt between different modalities and aims at satisfying the needs of both users and developers. We have alsoincluded a scripting module for microscope automation applications and a structure to efficiently share data between different modules, such as hardware control and image processing. Currently, ImSwitch provides support for light microscopy techniques but could be extendedto other microscopy modalities requiring multiple hardware synchronization. 

Place, publisher, year, edition, pages
The Open Journal , 2021. Vol. 6, no 64, article id 3394
Keywords [en]
microscopy, control software
National Category
Biophysics Software Engineering
Research subject
Biological Physics
Identifiers
URN: urn:nbn:se:kth:diva-304614DOI: 10.21105/joss.03394OAI: oai:DiVA.org:kth-304614DiVA, id: diva2:1609572
Funder
Swedish Foundation for Strategic Research , FFL15-0031
Note

QC 20211124

Available from: 2021-11-08 Created: 2021-11-08 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Automating STED microscopy for functional and structural live-cell imaging
Open this publication in new window or tab >>Automating STED microscopy for functional and structural live-cell imaging
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Optical microscopy imaging methods are today invaluable tools for studies in life sciences as they allow visualization of biological systems, tissues, cells, and sub-cellular compartments from millimetres down to nanometres. The invention and development of nanoscopy in the past 20 years has pushed fluorescence microscopy down to the nanoscale, reaching beyond the natural diffraction limit of light that does not allow focusing of visible light below sizes of around 200 nm, and into the realm of what was previously only thought possible with electron microscopy. The superior spatial resolution does however come at a price, including complex sample preparation, prolonged recording times, increased illumination doses, and limited fields of view. Stimulated emission depletion (STED) microscopy is one of the techniques that can deliver nanoscale resolution in a range of biological systems, but with all the above-mentioned costs. However, with the right sample the technique can deliver single nanometre spatial resolution, and with the right considerations live-cell imaging is more than possible.

In this thesis I present the development of a flexible STED microscope with methodological advancements in a range of directions that aim at facilitating the use of STED microscopy in life sciences and optimising the information extraction from the image data. The developments firstly focused on automation of the data acquisition, to allow the recording of imaging data both with a higher throughput and correlated with fast dynamic processes. I also implemented improved image analysis, both in terms of high throughput and precision as well as in connection with the data acquisition. Furthermore, I worked on control software development, with novel strategies to unify the control software of microscopes and to allow development and implementation of novel acquisition schemes. I also utilized novel fluorophores, to improve live-cell and multicolour possibilities and allow a wider range of applications in STED microscopy. Lastly, I developed a novel concept that takes advantage of STED. Additionally, I present applications of the microscope and image analysis in diverse biological samples such as mammalian cells, tissue sections, and bacteria. Altogether, this work aims at presenting new tools for an imaging technique that is already well-established, to contribute to further development, facilitation of novel experiments, and expansion of the range of applications.

Abstract [sv]

Ljusmikroskopi är idag ovärdeligt för forskare inom livsvetenskap för att visualisera och studera biologiska system, vävnader, celler, och beståndsdelar av celler på längdskalor från millimeter ner till nanometer. Uppfinnandet av nanoskopi och dess utveckling de senaste decennenierna har möjliggjort för fluorescensmikroskopi att nå den undre gränsen som tidigare var inom räckhåll endast med elektonmikroskopi. Anledningen till detta är diffraktionsgränsen som dikterar hur väl man kan fokusera elektromagnetisk strålning, och som i praktiken inte tillåter fokusering av synligt ljus till områden mindre än 200 nm i diameter. Nanoskopins överlägsna upplösning kommer däremot inte gratis, utan komplicerad förberedning av prover, förlängda inspelningstider, högre belysningsintensiteter, och begränsade synfält är några av de extra svårigheter som man måste ta hänsyn till. Stimulated emission depletion (STED) mikroskopi är en av dessa metoder som kan avbilda prover från biologiska system med nanometerupplösning, men med alla svårigheter som nämnts ovan. Men med rätt prov så kan metoden leverera en upplösning under 10 nm, och med rätt hänsyn tagen till cellöverlevnad så kan levande celler avbildas. 

I denna avhandling presenterar jag utvecklingen av ett STED-mikroskop med en rad tekniska framsteg som fokuserar på att underlätta användningen av STED-mikroskopi i livsvetenskap och optimera utvinningen av information från bilderna. Utvecklingen har fokuserat på automatisering, med möjligheten att samla in bilddata med både högre genomströmning och i samband med snabba processer i de biologiska systemen, men också förbättrad bildanalys både i form av högre genomströmning och precision samt i samband med datainsamlingen. Jag har också utvecklat kontrollmjukvara med nya strategier för att tillåta fortsatt utveckling och implementering av nya datainsamlingssätt för liknande mikroskop. Dessutom har jag utnyttjat nya fluorescenta molekyler för att förbättra möjligheten att använda tekniken i levande celler och med fler inspelningskanaler samt tillåta fler tillämpningssområden. Slutligen har jag utvecklat ett nytt koncept som tar hjälp av STED, och tillämpat mikroskopet och bildanalys på diverse biologiska system såsom däggdjursceller, vävnader och bakterier. Sammantaget siktar mitt arbete på att presentera nya verktyg för en redan etablerad mikroskopiteknik, för att bidra till fortsatt utveckling, underlätta nya typer av experiment och utöka bredden av tillämpningsområden. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 105
Series
TRITA-SCI-FOU ; 2021:52
Keywords
STED, microscopy, nanoscopy, super-resolution microscopy, automation, image analysis, fluorophores
National Category
Biophysics
Research subject
Biological Physics
Identifiers
urn:nbn:se:kth:diva-305055 (URN)978-91-8040-084-8 (ISBN)
Public defence
2021-12-17, Sal Petrén, Wargentinhuset https://kth-se.zoom.us/j/62958723396, Nobels väg 12B, Solna, 13:00 (English)
Opponent
Supervisors
Available from: 2021-11-19 Created: 2021-11-19 Last updated: 2025-02-20Bibliographically approved
2. Automated super-resolution microscopy for high-throughput imaging
Open this publication in new window or tab >>Automated super-resolution microscopy for high-throughput imaging
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fluorescence microscopes enable the visualization of biological samples with high contrast by labeling specific structures with fluorescent molecules. However, the spatial resolution of widely used microscopy techniques, such as widefield and confocal microscopy, is limited by the size of a focused spot of light, which roughly corresponds to half the wavelength of the illumination. To overcome this limitation, optical fluorescence nanoscopy techniques were developed, which achieve a higher spatial resolution by switching the fluorescent molecules within the sample between bright and dark states. 

Optical fluorescence nanoscopy techniques can be divided into two categories. The first, namely coordinate-targeted nanoscopy, switches the fluorescent molecules in a spatially annotated way, where it is known where and when the switching is induced. Instead, in stochastic approaches, the emitting molecules appear randomly in the sample and their location can be annotated with high spatial precision. 

This thesis focuses on reversible saturable optical fluorescence transitions (RESOLFT), a coordinate-targeted nanoscopy technique that initially relied on a beam of light that is moved across the sample (i.e., point scanning). Beams of different shapes and wavelengths are synchronized in time to generate super-resolution images. However, this approach creates a trade-off between imaging speed and the field of view. While it can acquire small fields of view at a fast speed, imaging larger areas can take up to several minutes. To overcome this limitation, the molecular nanoscale live imaging with sectioning ability (MoNaLISA) microscope employs patterns of light to parallelize RESOLFT imaging, collecting the fluorescence at different points simultaneously.

Throughput in microscopy is characterized as the number of cells per unit of time and area that a microscope can image. Achieving high throughput enables capturing fast cell dynamics and understanding how they correlate over large fields of view, providing insights into biological processes. Therefore, in this thesis I developed strategies to increase the throughput of coordinate-targeted nanoscopy methods. 

Firstly, I was involved in the mathematical formulation of fluorophore switching and its relationship to image resolution, in order to provide a framework to relate different parameters to image quality (Paper I). Secondly, I developed ImSwitch, an open-source software for microscope control. It implements a software architecture that enables flexibility and adaptability between different microscopy modalities (Paper II). Thirdly, I built a setup that increases the field of view by more than four times than previous implementations of MoNaLISA (Paper III). Finally, I combined MoNaLISA and ImSwitch to provide a framework to parallelize image acquisition, reconstruction, and visualization using multiple computational units (Paper IV).

Abstract [sv]

Optiska fluorescensmikroskop möjliggör avbildning av biologiska prover med hög kontrast tack vare inmärkning av specifika cellulära strukturer med fluorescerance molekyler. Den spatiella upplösningen med de vanligaste mikroskopimetoderna är däremot begränsad till hur väl man kan fokusera en ljusstråle, den så kallade diffraktionsgränsen. Metoder inom fluorescensnanoskopi kan uppnå spatiella upplösningar under denna gräns genom att använda fluorescerance molekyler med ljusa och mörka tillstånd.

Koordinatriktad nanoskopi är en familj av metoder inom fluorescensnanoskopi som använder ljusstrålar med olika våglängder och former för att ta superupplösta avbildningar. Nanoskopi i levande celler är särskilt möjligt med en typ av koordinatriktad nanoskopi som kallas RESOLFT (reversible saturable optical fluorescence transitions). I mikroskopiavbildning av levande celler är det speciellt viktigt att kunna avbilda snabba och dynamiska cellulära processer, samt att samla data från ett stort antal celler per experiment för att uppnå en hög genomströmning av data. I denna riktning har MoNaLISA (molecular nanoscale live imaging with sectioning ability) utvecklats – ett mikroskop som använder stationära ljusmönster för att parallellisera RESOLFT-mikroskopi genom att spela in fluorescens från olika punkter samtidigt. 

Den här avhandlingen fokuserar på att utveckla metoder för att höja genomströmningen av koordinatriktade nanoskopimetoder. I den första studien var jag involverad i den matematiska formuleringen av växlingen mellan olika ljusa och mörka tillstånd för fluorescerande molekyler och hur detta påverkar den spatiella upplösningen i avbildningen, för att utveckla ett ramverk för att relatera olika parametrar till bildkvalitet (Paper I). I den andra studien utecklade jag ImSwitch, en open-source mjukvara för mikroskopkontroll. ImSwitch implementerar en mjukvaruarkitektur som tillåter flexibilitet och anpassningsförmåga mellan olika mikroskopimetoder (Paper II). I den tredje studien utvecklade och byggde jag ett mikroskop som ökar synfältet mer än fyra gånger jämfört med tidigare implementationer av MoNaLISA (Paper III). I den fjärde och sista studien kombinerade jag MoNaLISA och ImSwitch i ett ramverk för parallelliserad bildtagning, bildrekonstruktion och visualisering genom att använda flera datorer och beräkningsenheter (Paper IV).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 71
Series
TRITA-SCI-FOU ; 2023:13
Keywords
RESOLFT, throughput, microscopy automation, nanoscopy
National Category
Biophysics
Research subject
Biological Physics
Identifiers
urn:nbn:se:kth:diva-326026 (URN)978-91-8040-559-1 (ISBN)
Public defence
2023-05-15, Air&Fire, Tomtebodevägen 23, Solna, 09:00 (English)
Opponent
Supervisors
Note

QC 2023-04-24

Available from: 2023-04-24 Created: 2023-04-21 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Casas Moreno, XavierAlvelid, JonatanBoden, AndreasTesta, Ilaria

Search in DiVA

By author/editor
Casas Moreno, XavierAl-Kadhimi, StaffanAlvelid, JonatanBoden, AndreasTesta, Ilaria
By organisation
Science for Life Laboratory, SciLifeLabBiophysics
In the same journal
Journal of Open Source Software
BiophysicsSoftware Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 632 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf