kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Construction of solutions and asymptotics for the defocusing NLS with periodic boundary data
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0001-6191-7769
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria..
2021 (English)In: Journal of Differential Equations, ISSN 0022-0396, E-ISSN 1090-2732, Vol. 304, p. 348-374Article in journal (Refereed) Published
Abstract [en]

We study the defocusing nonlinear Schrodinger equation in the quarter-plane with decaying initial datum and Dirichlet and Neumann boundary values approaching periodic single exponentials at large times. By applying Deift-Zhou steepest descent arguments to an associated Riemann-Hilbert problem, we construct solutions and obtain detailed formulas for their long-time asymptotics.

Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 304, p. 348-374
Keywords [en]
Nonlinear Schrodinger equation, Initial-boundary value problem, Riemann-Hilbert approach, Nonlinear steepest descent, Long-time asymptotics
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-304691DOI: 10.1016/j.jde.2021.10.002ISI: 000710683500006Scopus ID: 2-s2.0-85116854769OAI: oai:DiVA.org:kth-304691DiVA, id: diva2:1611034
Note

QC 20211112

Available from: 2021-11-12 Created: 2021-11-12 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lenells, Jonatan

Search in DiVA

By author/editor
Lenells, Jonatan
By organisation
Mathematics (Dept.)
In the same journal
Journal of Differential Equations
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf