kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tuning of PDGFRB density on cell surface allows for selective B cell activation with CD40-targeting bi-specific antibody
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0009-0000-0579-3060
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0000-0001-7987-6600
Affibody Medical AB, Scheeles väg 2, SE-171 65 Solna, Sweden.ORCID iD: 0000-0002-2230-5572
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology.ORCID iD: 0000-0001-5320-5227
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Pharmaceutical and Medical Biotechnology
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-305035OAI: oai:DiVA.org:kth-305035DiVA, id: diva2:1612608
Note

QC 20211124

Available from: 2021-11-18 Created: 2021-11-18 Last updated: 2025-02-17Bibliographically approved
In thesis
1. Strategies to improve and balance the expression levels of recombinant proteins in mammalian cell lines
Open this publication in new window or tab >>Strategies to improve and balance the expression levels of recombinant proteins in mammalian cell lines
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Proteins are the building blocks of all living organisms enabling us to function and survive. There are more than 100,000 different proteins in the human body performing a variety of vital tasks. Examples of essential proteins are antibodies defending our body against foreign invaders and hemoglobulin responsible for importing oxygen to our cells and exporting carbon dioxide out from our cells. Consequently, mutations leading to dysfunctional proteins is the cause of many known diseases. Fortunately, the advancement of modern medicine has enabled proteins also to be employed as therapeutics to treat and cure various conditions. For instance, human insulin is recombinantly produced in the bacterium E. coli and is used as a biopharmaceutical to treat patients with Diabetes. The increased knowledge about diseases, their cause, and what cellular pathway to target has led to the discovery of many novel and complex biologics. Hence, the manufacturing of biopharmaceuticals is a rapidly emerging field that enables the production of complex molecules that are target-specific, effective, and highly active in the human body. Mammalian cell lines are often the preferred cell factories for manufacturing biologics since they generate proteins with human-like post-translational modifications, which are often essential features to obtain functional, safe, and effective therapeutics. Unfortunately, these life-saving biologics are costly, making them affordable for a fraction of patients worldwide. Therefore, one of the goals of the biotech industry is to make accessible biologics for everyone who needs it regardless of financial background. One way to achieve this goal is to engineer mammalian cell factories to improve the quantity and quality of biopharmaceuticals while reducing the production cost.

The results presented in this thesis are the outcome of five different studies aiming to improve and balance the expression levels of recombinant proteins in mammalian cell lines. In the first study, we investigated the productivity differences between mammalian cell lines from different origins. In the second and third projects, by utilizing transcriptomic analysis, helper genes were identified for improving the quantity and quality of two difficult-to-express biologics. The fourth study generated an easy-to-use toolbox for balancing the expression levels of recombinant proteins in mammalian cell lines. In the final project, the toolbox from the fourth project was employed to develop an in vitro cell-based cancer assay which is a crucial tool in cancer research and drug discovery.

In summary, this thesis provides strategies to improve the production process of biologics in mammalian cell lines and thereby contributes to the goal of offering safe, effective, and affordable medicine to patients in every part of this world.

Abstract [sv]

Proteiner är livets byggstenar och därav nödvändiga för vår överlevnad. Det finns mer än 100,000 olika proteiner i människokroppen som utför åtskilliga och livsviktiga funktioner. Två exempel på viktiga och allmänkända proteiner är antikroppar, kroppens soldater som förvarar oss mot främmande mikroorganismer och hemoglobin som transporterar syre till kroppens olika organ och för bort den giftiga koldioxiden från cellerna. Följaktligen är mutationer som leder till dysfunktionella proteiner den främsta orsaken till majoriteten av kända sjukdomar. Lyckligtvis har den stora framgången inom forskning och medicin möjliggjort användandet av proteiner som läkemedel för behandling av olika sjukdomar. Till exempel är insulin som ett protein och används som läkemedel för diabetiker och som produceras rekombinant i bakterien E. coli. Den ökade kunskapen om sjukdomar, hur de uppkommit och vilka cellulära mekanismer som är viktiga för deras utveckling, har lett till upptäckten av flera nya och komplexa biologiska läkemedel. Detta har lett till att tillverkningen av bioläkemedel har blivit ett snabbt växande område som möjliggör produktion av komplexa molekyler som är målspecifika, effektiva och mycket aktiva i människokroppen. Däggdjurscellinjer är ofta det mest förekommande typen av cellfabriker för tillverkning av biologiska läkemedel då de är kapabla att generera proteiner med modifieringar som liknar det humana och som ofta är väsentliga för att erhålla funktionella, säkra och effektiva läkemedel. Tyvärr är dessa livräddande biologiska läkemedel mycket dyra, vilket gör dem tillgängliga för endast en bråkdel av patienter över hela världen. Därför är ett av målen för bioteknikindustrin att göra biologiska läkemedel tillgängliga för alla som behöver det oavsett ekonomisk bakgrund. Ett sätt att uppnå detta mål är att framställa effektivare däggdjurscellfabriker för att förbättra mängden och kvalitén på bioläkemedel och samtidigt reducera produktionskostnaden.

Resultaten som presenteras i denna avhandling är skörden av fem distinkta studier, som syftar till att förbättra och balansera uttrycksnivåerna av rekombinanta proteiner i däggdjurscellinjer. I den första studien undersökte vi skillnaderna i produktivitet mellan två däggdjurscellinjer från olika ursprung. I det andra och tredje projektet, genom att använda transkriptom-analys, identifierades hjälpargener för att förbättra kvantiteten och kvaliteten på två svåruttryckbara biologiska läkemedel. Den fjärde studien genererade en lättanvänd verktygslåda för att balansera uttrycksnivåerna av rekombinanta proteiner i däggdjurscellinjer. I det sista projektet användes verktygslådan från den fjärde studien för att utveckla en i vitro cellbaserad canceranalys-plattform som är ett verktyg för cancerforskning och upptäckter av nya läkemedel.

Sammanfattningsvis, presenterar denna avhandling verktyg för att kunna förbättra produktionsprocessen av biologiska läkemedel i däggdjurscellinjer och därmed bidrar till målet att erbjuda säkert, effektivt och överkomligt läkemedel till alla patienter i världen.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 83
Series
TRITA-CBH-FOU ; 2021:56
Keywords
CHO, HEK293, Aggregation, Bispecific, Cancer assay, Cell line engineering, sulfatase, biologics, transcriptomic
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-305044 (URN)978-91-8040-075-6 (ISBN)
Public defence
2021-12-16, F3, Lindstedsvägen 26, våningsplan 2, Sing-Sing, KTH campus, Zoom: https://kth-se.zoom.us/webinar/register/WN_8dN2uZ9GS0O3no3ikftPDA, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2021-11-19

Available from: 2021-11-19 Created: 2021-11-19 Last updated: 2022-07-11Bibliographically approved
2. Platforms and strategies harnessing signaling pathways of multifactorial diseases by multispecific antibodies
Open this publication in new window or tab >>Platforms and strategies harnessing signaling pathways of multifactorial diseases by multispecific antibodies
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Abstract [ENG]

Proteins govern a multitude of biological functions vital to sustain life. The ability to withstand diseases development and harboring a defense against foreign pathogens is attributed to the wonders of the immune system and the proteins and cells its comprised of. Antibodies arguably stands as one of the most important protein classes involved in conferring immunity, able to recognize and engage, i.e., bind to pathogenic agents and exert their function. With the rise of engineered antibodies, the last three decades have ushered in an age of targeted therapeutics to address complex diseases with a more favorably efficacy and safety profile. However, an array of these diseases are governed by multifactorial variables often in interplay with each other, demanding a more broadened therapeutic strategy. Hence, significant efforts have been invested in the engineering of antibodies, expanding beyond a single speci- ficity to bi or multispecific molecules able to recognize more than one antigen within one and the same molecule. Naturally, this opens up for a multitude of functions i.e. mode of actions and harnessing of numerous diseases relevant pathways a multispe- cific potential drug compounds could carry out for a therapeutically beneficial out- come. The increased drug design complexity is accompanied with developability chal- lenges related to optimal drug design between the two or more binding specificities to achieve intended effect in a particular diseases’ biology setting. Moreover, the de- velopability profile of multispecific affinity proteins with regards to product yields and quality have long hampered the true translation-ability of these novel drug com- pounds into a clinical and industrial setting. The herein presented thesis aimed at highlighting the importance of a harmonized drug development pipeline taking into account aforementioned challenges and introducing toolboxes, platforms and work- flows to screen and optimize a variety of bispecific drug formats. Furthermore, we exploratively developed four unique bispecific constructs carrying out different mode- of-actions inhabiting partly rationally tailored design with respect to targeted dis- eases setting in the field of autoimmune diseases and oncology. 

The first bispecific molecule developed herein presented in paper I, aimed at target- ing the diseases condition in SLE from multiple fronts, with a dual blocking mode of action targeting two related ligands driving diseases progression. A lead bispecific AffiMab format chosen post screening of several candidates in molecular and in vitro systems was evaluated in ex vivo whole blood model assay demonstrating a signifi- cant effect by the dual blocking strategy to actively decrease the levels of the target ligands. The molecule warrants further evaluation in approriate in vivo models and ii ex vivo whole blood assay with patient derived material given the potential beneficial effect of the proposed therapeutic strategy based on the fundmenetal biology of the diseases and clinical observations. In paper II, a novel bispecific format able to de- liver cargo antigens to antigen presenting cells in a modular fashion was developed. Moreover, the bispecific exerts agonistic downstream signaling of targeted cells via CD40 engagement, synergistically priming immune cell activation whilst delivering the cargo antigen simultaneously. The delivery is based on an affinity interaction between a static peptide stretch synthesized with the antigen peptide sequence and a single chain attached to the structure of an anti-CD40 agonistic antibody. Employ- ment of the established adaptable drug affinity conjugate platform (ADAC) enabled the delivery of antigen cargo strictly dependent on the affinity interaction, inducing a significant anti-tumor response by expansion of antigen specific CD8+ T cells demonstrated in vivo. 

In paper III, we explore a HER2 and EGFR dual blocking strategy employing bis- pecific AffiMabs. The bispecifics demonstrated a significantly greater effect in an in vitro cell based assay compared to the combination treatment with the two monospe- cific molecules targeting respective antigen, indicating a potential synergistic effect conferred by the format. However, the effect of the molecule and potential benefit versus the monospecific or combination treatment need to be further evaluated in vivo. Paper IV aimed at harnessing the CD40 dendritic cell activation axis by a bispecific immune cell engager AffiMab, governing CD40 mediated activation depen- dent on the engagement with a stroma antigen upregulated in the tumor microenvi- ronment, platelet growth factor receptor B (PDGFRβ). The AffiMab demonstrated the intended mode of action in in vitro cell based model assays, and with isolated antigen presenting cells and B cells from healthy donor blood, albeit room for format optimization should be taken into consideration. The study warrants further investi- gation in appropriate in vivo models for treatment of solid tumors. 

In paper V we developed a modular platform to fine tune protein expression in mammalian cells on a translational level utilizing 5’UTR hairpin structure, herein coined as Regulatory elements (RgEs). Hypothesizing that “less is more” wherein a balanced expression of a proteins subunits was demonstrated to be of greater impor- tance than a maximum expression output of each component to apprehend correctly assembled protein product. The developed tool box holds possibility for multifaceted applications, and was extended in paper VI to the use in the establishment of an in vitro culture system to fine tune receptor densities on the cell surface of a defined iii cell line. The applications end-use would be functioning as an integrative part in the high throughput screening pipeline of bispecific immune cell engagers for early eval- uation and ranking of formats and access to target antigens impact on the function- ality of screened constructs. 

In summary, the herein presented work exploratively evaluated mode of actions, de- sign, format, and engineering of bispecific molecules to address both challenges in terms of achieving intended effect but equally important considerations and solutions to improve and evaluate product manufacturability early on in the drug development pipeline. 

Abstract [sv]

Sammanfattning [SV]

Proteiner styr en mängd biologiska funktioner som är avgörande för att upprätthålla liv. Förmågan att motstå utveckling av sjukdomar och att aktivera ett försvar mot främmande patogener tillskrivs immunsystemets underverk och de proteiner och celler som det består av. Antikroppar står utan tvekan som en av de viktigaste proteinklasserna involverade i att skapa immunitet, genom att känna igen och binda med en viss affinitet till patogen samt utöva deras specialiserade biologiska funktioner. Den exponentiella tillväxten av rationellt konstruerade antikroppar har de senaste tre decennierna inlett en tid av målinriktad terapi för att hantera komplexa sjukdomar med en mer fördelaktig effektivitet och säkerhetsprofil. Men en rad av dessa sjukdomar styrs av multifaktoriella variabler, ofta i samspel med varandra, vilket kräver en mer breddad behandlings strategi. Därför har betydande ansträngningar investerats i konstruktionen av antikroppar, som expanderar bortom en enda specificitet till bi- eller multispecifika molekyler som kan känna igen mer än ett antigen inom en och samma molekyl. Detta öppnar upp för en mängd funktioner en multispecifik antikropp skulle kunna utföra. Den ökade komplexiteten av dessa syntetiska molekyler åtföljs av utvecklingsutmaningar relaterade till optimal design mellan de två eller flera bindnings-specificiteterna för att uppnå avsedd effekt i en viss sjukdoms biologiska kontext. Dessutom har utvecklingsprofilen för multispecifika affinitetsproteiner med avseende på produktutbyte och kvalitet länge hämmat den verkliga översättningsförmågan hos dessa nya läkemedelskandidater i en klinisk och industriell miljö. Den här presenterade avhandlingen syftar till att belysa vikten av en harmoniserad läkemedelsutvecklings-pipeline som tar hänsyn till ovannämnda utmaningar och introducerar verktygslådor, plattformar och arbetsflöden för att utvärdera och optimera en mängd olika bispecifika läkemedelsformat. Dessutom utforskade vi fyra unika bispecifika antikroppar som utför olika funktioner rationellt skräddarsydda med avseende på att rikta sig på komplexa sjukdomar inom området autoimmuna sjukdomar och onkologi. 

Den första bispecifika molekylen som utvecklats häri presenterad i artikel I, syftar till att adressera det komplexa sjukdomstillståndet i SLE från flera fronter, genom ett dubbelt blockerande verkningssätt riktat mot två sjukdomsrelaterade ligander som driver sjukdomsprogression. Ett optimerat bispecifikt AffiMab-format valt efter utvärdering av flera kandidater i molekylära och in vitro-system testades i ex vivo helblods-analyser som uppvisade en signifikant effekt av den dubbla blockerings- strategin genom att påverka nivåerna av båda mål ligander i ett representativt SLE- v modellsystem. Sammanfattningsvis, besitter molekylen förmågan att adressera två kritiska signal vägar i SLE för att avlasta den inflammatoriska processen. I artikel II utvecklades ett nytt bispecifikt format som kan leverera lastantigen till antigen- presenterande celler på ett modulärt sätt. Dessutom utövar den bispecifika antikroppen agonistisk nedströms-signalering av målceller via CD40-engagemang, vilket synergistiskt initierar immuncells-aktivering samtidigt som last-antigenet levereras till den aktiverade målcellen. Leveransen är baserad på en affinitets- interaktion mellan en statisk peptid-sträcka syntetiserad med en antigen-peptid sekvens och ett sekundärt affinitets protein fäst till strukturen av en CD40 inriktad agonistisk antikropp. Användning av den etablerade plattformen (ADAC) möjliggjorde leverans av last-antigen strikt beroende på affinitets-interaktionen, vilket inducerade ett anti-tumörsvar genom expansion av antigen-specifika CD8+ T- celler demonstrerat i en in vivo tumör djur-modell. 

I artikel III utforskar vi en dubbel blockerings-strategi av två cancer relaterade receptorer (HER2 och EGFR) med hjälp av bispecifika AffiMabs. Bispecifikernas visade en signifikant bättre effekt i termer av cytotoxisk effekt i en in vitro cell- baserad analys jämfört med kombinationsbehandlingen med de två monospecifika molekylerna riktade mot respektive antigen. Vilket indikerar en potentiell synergistisk effekt med det bispecifika formatet. Emellertid måste effekten av molekylen och dess potentiell nytta jämfört med den monospecifika eller kombinationsbehandlingen utvärderas ytterligare in vivo. Artikel IV syftade till att utnyttja CD40-dendritiska cell aktiverings-axeln med hjälp av en bispecifik immuncell-engagerande AffiMab, som styr CD40-medierad aktivering beroende på engagemanget med ett stroma-antigen upp-reglerat i tumörmikromiljön, trombocyt- tillväxtfaktor-receptor β (PDGFRβ). AffiMaben uppvisade dess avsedda verkningssättet i in vitro cell-baserade analyser, och med antigen-presenterande celler och B-celler isolerade från blod donerat från en frisk donator, även om utrymme för formatoptimering bör beaktas. Studien kräver ytterligare undersökning i lämpliga in vivo-modeller för behandling av solida tumörer. 

I artikel V utvecklade vi en modulär plattform för att finjustera proteinuttryck i däggdjursceller genom användning av ett modulärt genetiskt verktyg, här myntad som regulatoriska element (RgEs), med hypotesen att "less is more" där ett balanserat uttryck av ett proteins sub-enheter visade sig vara av större betydelse än en maximal uttrycksgrad av varje komponent för att erhålla en korrekt sammansatt proteinprodukt i höga mängder. Den utvecklade verktygslådan rymmer möjligheten vi för mångfacetterade tillämpningar, och utökades i artikel VI till att användas vid etablering av ett in vitro-odlingssystem för att finjustera receptor-densiteter på cellytan av en definierad cellinje. Applikationens slutanvändning skulle fungera som en integrerande del i en läkemedels utvärderings-pipeline av bispecifika immuncell- engagerare för tidig utvärdering och rangordning av format och påverkan av tillgången till mål-antigenet och dess påverkar på funktionaliteten hos utvärderade format. 

Sammanfattningsvis, det häri presenterade arbetet, explorativt utvärderade behandlingsformer, design, format och produktions utvärdering av bispecifika molekyler för att möta både utmaningar när det gäller att uppnå avsedd effekt men lika viktigt lösningar för att förbättra och utvärdera produkttillverkning av dessa komplexa molekyler tidigt i läkemedelsutvecklings-pipelinen. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 134
Series
TRITA-CBH-FOU ; 2023:15
Keywords
Antibodies, Bispecific antibodies, Multispecific affinity proteins, Protein engineering, Protein expression, Cancer, Immunotherapy, Autoimmunity, Systemic Lupus Erythematosus, Affibody molecules, AffiMab , Antikroppar, Bispecifika antikroppar, Multispecifika affinitets protein, Protein engineering, Protein uttryck, Cancer, Immunoterapai, Autoimmunitet, Systemic Lupus Erythematosus, Affibody molekyler, AffiMab 
National Category
Biochemistry Molecular Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-326456 (URN)978-91-8040-550-8 (ISBN)
Public defence
2023-05-26, Oskar Kleins Auditorium, Roslagstullsbacken 21, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2023-05-03

Available from: 2023-05-03 Created: 2023-05-02 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Mebrahtu, AmanAniander, GustavMoradi, MonaThalén, NiklasRockberg, Johan

Search in DiVA

By author/editor
Mebrahtu, AmanAniander, GustavMega, AlessandroMoradi, MonaThalén, NiklasFrejd, Fredrik YRockberg, Johan
By organisation
Protein Technology
Pharmaceutical and Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 159 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf