kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Probing solution structure of the pentameric ligand-gated ion channel GLIC by small-angle neutron scattering
Stockholm Univ, Sci Life Lab, Dept Biochem & Biophys, S-10691 Stockholm, Sweden..ORCID iD: 0000-0003-3271-7973
Stockholm Univ, Sci Life Lab, Dept Biochem & Biophys, S-10691 Stockholm, Sweden..ORCID iD: 0000-0001-5889-6899
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0001-7540-5887
Univ Copenhagen, Niels Bohr Inst, Struct Biophys Xray & Neutron Sci, DK-2100 Copenhagen, Denmark..
Show others and affiliations
2021 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 118, no 37, article id e2108006118Article in journal (Refereed) Published
Abstract [en]

Pentameric ligand-gated ion channels undergo subtle conformational cycling to control electrochemical signal transduction in many kingdoms of life. Several crystal structures have now been reported in this family, but the functional relevance of such models remains unclear. Here, we used small-angle neutron scattering (SANS) to probe ambient solution-phase properties of the pHgated bacterial ion channel GLIC under resting and activating conditions. Data collection was optimized by inline paused-flow size-exclusion chromatography, and exchanging into deuterated detergent to hide the micelle contribution. Resting-state GLIC was the best-fit crystal structure to SANS curves, with no evidence for divergent mechanisms. Moreover, enhanced-sampling moleculardynamics simulations enabled differential modeling in resting versus activating conditions, with the latter corresponding to an intermediate ensemble of both the extracellular and transmembrane domains. This work demonstrates state-dependent changes in a pentameric ion channel by SANS, an increasingly accessible method for macromolecular characterization with the coming generation of neutron sources.

Place, publisher, year, edition, pages
Proceedings of the National Academy of Sciences , 2021. Vol. 118, no 37, article id e2108006118
Keywords [en]
Cys-loop receptors, gating, small-angle neutron scattering, molecular dynamics, deuterated detergent
National Category
Biophysics
Identifiers
URN: urn:nbn:se:kth:diva-304841DOI: 10.1073/pnas.2108006118ISI: 000705153400018PubMedID: 34504004Scopus ID: 2-s2.0-85114750418OAI: oai:DiVA.org:kth-304841DiVA, id: diva2:1612834
Note

QC 20211119

Available from: 2021-11-19 Created: 2021-11-19 Last updated: 2025-02-20Bibliographically approved
In thesis
1. From Static Structures to Free Energy Landscapes: Characterizing Conformational Transitions in Biological Macromolecules
Open this publication in new window or tab >>From Static Structures to Free Energy Landscapes: Characterizing Conformational Transitions in Biological Macromolecules
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To be alive means to temporarily counteract the fundamental dispersive driving force described by the second law of thermodynamics, eventually leading all systems to decay and disorder. In cells, this task is partly carried out by proteins - small specialized molecular machines that utilize free energy to maintain the proper functioning of the cell. Malfunction of a protein, often caused by genetic mutations, can lead to death and disease, underscoring the importance of understanding their function in order to develop new drugs and therapies. The function of a protein can in principle be fully described by its free energy landscape, a probability distribution that maps the relationship between protein structure and function through motion. However, constructing such free energy landscapes through experimental techniques alone is close to impossible. Some techniques can generate static snapshots of protein structures but do not yield direct information about the function, while other methods capture functional aspects but do not have the resolution to uncover the structural changes involved. Computer simulations in the form of molecular dynamics simulations can bridge this gap but are associated with limitations in the form of sampling relevant timescales and distilling high-dimensional data into a form that properly describes protein function. 

The aim of this thesis is to develop and apply methods that can overcome the sampling and analysis problems associated with molecular dynamics simulations, assess their predictive power through experimental validation, and explore how such models can be effectively combined with various experimental techniques, such as SANS, cryo-EM, and electrophysiology. Finally, these methods are applied to reveal multiple new structural and functional aspects of pentameric ligand-gated ion channels (pLGICs), which are of great importance to synaptic signal transmission between nerve cells. 

The work presented in this thesis can be characterized according to three different themes. First, I describe the development of a coarse-grained simulation method that generates an approximate pathway between two known states, and how this can be used to achieve better sampling in molecular dynamics simulation. Then, I investigate how enhanced sampling and Markov state modeling can be used to estimate free energy landscapes of pLGICs, and how such methods can work alongside and inform experimental methods to reveal many new aspects of pLGIC structure and function. Finally, I explore the use of Markov state modeling in the drug discovery field. This thesis thus contributes to computational method development and the understanding of pLGIC function - two different aspects with potential to contribute to the development of new drugs.

Abstract [sv]

Att leva innebär att tillfälligt motverka den grundläggande dispersiva drivkraften som beskrivs av termodynamikens andra lag, vilken i slutändan leder alla system till oordning och förfall. I celler utförs denna uppgift delvis av proteiner - små specialiserade molekylära maskiner som använder fri energi för att upprätthålla cellens rätta funktion. Felmekanism hos ett protein, exempelvis orsakad av genetiska mutationer, kan leda till död och sjukdom, vilket understryker vikten av att förstå deras funktion för att utveckla nya läkemedel och terapier. Ett proteins funktion kan i princip fullständigt beskrivas av dess fria energilandskap, en typ av sannolikhetsfördelning som kartlägger förhållandet mellan struktur och funktion genom rörelse. Att konstruera fria energilandskap genom enbart experimentella tekniker är dock nästintill omöjligt. Vissa tekniker kan ge statiska ögonblicksbilder av proteinstrukturer, men kan inte ge någon direkt information om dess funktion, medan andra metoder belyser funktionella aspekter men saknar upplösningen att visualisera de åtföljande strukturella förändringarna. Datorsimuleringar i form av molekyldynamiksimuleringar kan överbrygga denna klyfta, men åtföljs av begränsningar i att nå relevanta tidskalor samt reducera högdimensionella data till en form som väl beskriver proteinfunktion.

Syftet med denna avhandling är att utveckla och tillämpa metoder som kan överkomma de samplings- och analysproblem som förknippas med molekyldynamiksimuleringar, uppskatta deras prediktiva förmågor genom experimentell validering samt utforska hur dessa effektivt kan kombineras med olika experimentella tekniker, såsom SANS, cryo-EM och elektrofysiologi. Slutligen tillämpas dessa metoder för att klargöra flertalet nya aspekter av funktionen hos pentameriska ligandstyrda jonkanaler (pLGICs), vilka är av stor betydelse för synaptisk signalöverföring mellan nervceller.

Arbetet som presenteras i denna avhandling kan karakteriseras enligt tre olika teman. Först beskrivs utvecklingen av en grovkornig simuleringsmetod som genererar en ungefärlig trajektorie mellan två kända proteinstrukturer, och hur detta kan utnyttjas för att uppnå bättre sampling i molekyldynamiksimuleringar. Därefter undersöks hur metoder för samplingsförbättring tillsammans med Markovtillståndsmodellering kan användas för att uppskatta fria energilandskap av pLGICs och hur de kan komplettera och informera experimentella metoder för att klarlägga nya aspekter av struktur-funktionsförhållandet hos pLGICs. Slutligen utforskas användningsområden för Markovtillståndsmodeller inom läkemedelsutveckling. Denna avhandling bidrar således till utvecklingen av beräkningsmetoder samt till ökad förståelse för hur pLGICs fungerar - två olika aspekter med potential att bidra till utvecklingen av nya läkemedel.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 257
Series
TRITA-SCI-FOU ; 2023:23
Keywords
Protein conformational transitions, molecular dynamics simulations, statistical mechanics, ion channels, Proteinkonformationsövergångar, molekyldynamiksimuleringar, statistisk mekanik, jonkanaler
National Category
Biophysics
Identifiers
urn:nbn:se:kth:diva-326995 (URN)978-91-8040-575-1 (ISBN)
Public defence
2023-06-13, Air&Fire, Tomtebodavägen 23, Solna, 09:00 (English)
Opponent
Supervisors
Note

QC 2023-05-17

Available from: 2023-05-17 Created: 2023-05-16 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Lycksell, MarieBergh, CathrineLindahl, Erik

Search in DiVA

By author/editor
Lycksell, MarieRovsnik, UrskaBergh, CathrineArleth, LiseLindahl, Erik
By organisation
BiophysicsScience for Life Laboratory, SciLifeLab
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Biophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf