kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automated Classification of Plasma Regions Using 3D Particle Energy Distributions
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST). Main Astron Observ, Kiev, Ukraine..
Swedish Inst Space Phys, Uppsala, Sweden..ORCID iD: 0000-0001-5550-3113
Swedish Inst Space Phys, Uppsala, Sweden.;Uppsala Univ, Uppsala, Sweden..
St Petersburg State Univ, St Petersburg, Russia..
Show others and affiliations
2021 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 126, no 10, article id e2021JA029620Article in journal (Refereed) Published
Abstract [en]

We investigate the properties of the ion sky maps produced by the Dual Ion Spectrometers (DIS) from the Fast Plasma Investigation (FPI). We have trained a convolutional neural network classifier to predict four regions crossed by the Magnetospheric Multiscale Mission (MMS) on the dayside magnetosphere: solar wind, ion foreshock, magnetosheath, and magnetopause using solely DIS spectrograms. The accuracy of the classifier is >98%. We use the classifier to detect mixed plasma regions, in particular to find the bow shock regions. A similar approach can be used to identify the magnetopause crossings and reveal regions prone to magnetic reconnection. Data processing through the trained classifier is fast and efficient and thus can be used for classification for the whole MMS database.

Place, publisher, year, edition, pages
American Geophysical Union (AGU) , 2021. Vol. 126, no 10, article id e2021JA029620
Keywords [en]
MMS, machine learning, bow shock
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-304839DOI: 10.1029/2021JA029620ISI: 000711498900007Scopus ID: 2-s2.0-85118179129OAI: oai:DiVA.org:kth-304839DiVA, id: diva2:1613307
Note

QC 20211122

Available from: 2021-11-22 Created: 2021-11-22 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Olshevsky, ViacheslavAnderzén Rodenkirchen, SvenHerman, PawelMarkidis, Stefano

Search in DiVA

By author/editor
Olshevsky, ViacheslavKhotyaintsev, Yuri, VAnderzén Rodenkirchen, SvenHerman, PawelChien, Steven W. D.Markidis, Stefano
By organisation
Computational Science and Technology (CST)
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf