kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A similarity-based Bayesian mixture-of-experts model
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.ORCID iD: 0000-0001-6724-2547
(English)Manuscript (preprint) (Other academic)
Abstract [en]

We present a new nonparametric mixture-of-experts model for multivariate regression problems, inspired by the probabilistic k-nearest neighbors algorithm. Using a conditionally specified model, predictions for out-of-sample inputs are based on similarities to each observed data point, yielding predictive distributions represented by Gaussian mixtures. Posterior inference is performed on the parameters of the mixture components as well as the distance metric using a mean-field variational Bayes algorithm accompanied with a stochastic gradient-based optimization procedure. The proposed method is especially advantageous in settings where inputs are of relatively high dimension in comparison to the data size, where input-output relationships are complex, and where predictive distributions may be skewed or multimodal. Computational studies on two synthetic datasets and one dataset comprising dose statistics of radiation therapy treatment plans show that our mixture-of-experts method performs similarly or better than a conditional Dirichlet process mixture model both in terms of validation metrics and visual inspection.

Keywords [en]
mixture-of-experts, nonparametric Bayesian regression, k-nearest neighbors, pseudolikelihood, variational inference, reparameterization trick
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-305185OAI: oai:DiVA.org:kth-305185DiVA, id: diva2:1613531
Note

QC 20211125

Available from: 2021-11-22 Created: 2021-11-22 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Probabilistic machine learning methods for automated radiation therapy treatment planning
Open this publication in new window or tab >>Probabilistic machine learning methods for automated radiation therapy treatment planning
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, different parts of an automated process for radiation therapy treatment planning are investigated from a mathematical and computational perspective. Whereas traditional inverse planning is labor-intensive, often comprising several reiterations between treatment planner and physician before a plan can be approved, much of recent research have been aimed at using a data-driven approach by learning from historically delivered plans. Such an automated planning pipeline is commonly divided into a first part of predicting achievable values of dose-related quantities, and a second part of finding instructions to the treatment machine mimicking as best as possible the predicted values. Challenges associated with this type of prediction–mimicking workflow exist, however—for example, in typical applications, patient data is high-dimensional, scarce and has relatively low signal-to-noise ratio due to inter-planner variations, and significant information may be lost in the transition between prediction and mimicking.

We propose to address these challenges through better probabilistic modeling of the predictive inferences of dose-related quantities and increased accuracy of the optimization functions used for dose mimicking. In particular, starting with the disconnect between conventional planning objectives and evaluation metrics, in the first paper, we establish a framework for handling dose statistics as optimization function constituents. Subsequently, in the second and fourth papers, we present ways of predicting spatial dose and dose statistics, respectively, in a probabilistically rigorous fashion, the latter application relying on the similarity-based mixture-of-experts model developed in the third paper. As a nonparametric Bayesian regression model, equipped with a mean-field and stochastic variational inference algorithm, this mixture-of-experts model is suitable for managing complex input–output relationships and skewed or multimodal distributions. The second and fourth papers also introduce dose mimicking objectives able to leverage predictive distributions of spatial dose and dose statistics. In the fifth paper, we further build upon the probabilistic paradigm, merging the fields of multicriteria optimization and automated planning to create a semiautomatic alternative workflow in which certain manual intervention is possible. Lastly, in the sixth paper, we present a means of incorporating robustness against geometric uncertainties into an automated planning pipeline.

Abstract [sv]

I denna avhandling studeras olika delar av en automatiserad process för strålterapiplanering från ett matematiskt och beräkningsmässigt perspektiv. Medan traditionell inversplanering är arbetsintensiv och ofta kräver upprepade iterationer mellan planerare och läkare, har mycket forskning på senare tid fokuserat på utvecklandet av datadrivna tillvägagångssätt baserade på inlärning från historiskt levererade planer. En sådant automatiserat arbetsflöde delas ofta upp i en första del av att först predicera uppnåeliga värden av dosrelaterade storheter och i en andra del av att bestämma de instruktioner till behandlingsmaskinen som bäst rekonstruerar de predicerade värdena. Emellertid finns utmaningar kopplade till denna typ av prediktion–rekonstruktion-flöde – exempelvis är patientdata i typiska tillämpningar högdimensionell, sällsynt och har relativt lågt signal--brus-förhållande, och väsentlig information kan gå förlorad i övergången mellan prediktion och rekonstruktion.

Vi föreslår att hantera dessa utmaningar genom förbättrade probabilistiska prediktionsmodeller för dosrelaterade storheter och ökad noggrannhet hos de optimeringsfunktioner som används vid dosrekonstruktion. Med utgång i diskrepansen mellan konventionella planeringsmålfunktioner och evalueringsmått etablerar vi i den första artikeln ett ramverk för att hantera dosstatistikor som beståndsdelar i optimeringsfunktioner. Vi presenterar sedan i den andra och den fjärde artikeln sätt att predicera spatial dos respektive dosstatistikor på ett probabilistiskt rigoröst sätt, varav det senare genom den likhetsbaserade mixture-of-experts-modell som utvecklas i den tredje artikeln. Som en ickeparametrisk bayesiansk regressionsmodell, försedd med tillhörande medelfälts- och stokastisk variationsinferensalgoritm, är denna mixture-of-experts-modell väl lämpad för att hantera komplexa indata–utdata-relationer och skeva eller multimodala fördelningar. Den andra och den fjärde artikeln introducerar också dosrekonstruktionsmålfunktioner som kan dra nytta av prediktiva fördelningar av spatial dos och dosstatistikor. I den femte artikeln bygger vi vidare på den probabilistiska paradigmen och förenar flermålsoptimering med automatisk planering för att skapa ett semiautomatiskt alternativt arbetsflöde, där viss manuell interaktion är möjlig. Slutligen presenterar vi i den sjätte artikeln ett sätt att ta hänsyn till robusthet med avseende på geometriska osäkerheter i ett automatiskt planeringsflöde.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 201
Series
TRITA-SCI-FOU ; 2021;51
National Category
Probability Theory and Statistics
Research subject
Applied and Computational Mathematics, Mathematical Statistics
Identifiers
urn:nbn:se:kth:diva-305188 (URN)978-91-8040-090-9 (ISBN)
Public defence
2021-12-15, Sal F3 och via Zoom: https://kth-se.zoom.us/j/68119542297, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Available from: 2021-11-23 Created: 2021-11-22 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Zhang, Tianfang

Search in DiVA

By author/editor
Zhang, Tianfang
By organisation
Mathematical Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf