kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metabolite-level enzyme regulation in and around the bacterial Calvin cycle revealed by interaction proteomics
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.ORCID iD: 0000-0003-4105-7567
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.ORCID iD: 0000-0002-2821-9026
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0002-3677-5508
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Systems Biology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Bioinformatics and Computational Biology
Identifiers
URN: urn:nbn:se:kth:diva-305281OAI: oai:DiVA.org:kth-305281DiVA, id: diva2:1614218
Note

QC 20211125

Available from: 2021-11-24 Created: 2021-11-24 Last updated: 2025-02-07Bibliographically approved
In thesis
1. Systems biology techniques show high prevalence of post-translational regulation in the cyanobacterium Synechocystis PCC 6803
Open this publication in new window or tab >>Systems biology techniques show high prevalence of post-translational regulation in the cyanobacterium Synechocystis PCC 6803
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Earth's climate has been upset by carbon dioxide (CO2) emissions from human activities and the use of fossil resources. To prevent catastrophic events on the environment and on civilizations, we urgently need to develop alternative solutions that utilize renewable resources. One contributing solution is to exploit metabolically engineered cyanobacteria that convert CO2 and sunlight into bioproducts, such as fuels or biodegradable plastics. However, these ancient bacteria have evolved a complex, robust, and self-regulated metabolic network that efficiently converts CO2 to biomass rather than a foreign chemical, which limits the productivity of engineered strains and the potential to use them in an industrial setting. Extended knowledge is therefore needed regarding the regulatory processes that govern their metabolism, in order to develop more efficient producer strains. The present investigation took advantage of recently developed systems biology techniques to explore translational and post-translational regulation in the model cyanobacterium Synechocystis. The first study showed that CO2-starved Synechocystis downregulated anabolic processes by post-translational ribosome inactivation. Ribosome profiling indicated that ribosomes that remained active were primarily synthesizing proteins involved in CO2 uptake and stress mediation. The regulatory protein thioredoxin TrxC was upregulated by induced translation and may conduct post-translational redox regulation during CO2 stress. In the second study, diurnal oscillations in the transcriptome, translatome and proteome were investigated using mRNA sequencing, ribosome profiling and quantitative proteomics. A stable proteome was observed, despite significant oscillations in protein synthesis. A model describing the dynamic relationship between protein synthesis and protein abundance suggested that a slow protein turnover is causing the observed effect. A stable proteome suggests that shifts between autotrophic and heterotrophic metabolism occurring during day-night cycles are controlled by post-translational regulation. The third study investigated proteome arrangement strategies during light and CO2 limitation. Integration of proteomics data into a cellular protein economy model indicated that Synechocystis keeps underutilized protein reserves. These reserves may be activated by post-translational regulation to quickly adapt to changing growth conditions. In the fourth study, post-translational regulation by metabolite interactions was investigated using interaction proteomics and enzyme kinetic assays. Glyceraldehyde-3-phosphate activated the enzyme fructose/sedoheptulose-bisphosphatase, suggesting a feedforward activation mechanism in the Calvin cycle. AMP deactivates the same enzyme, which may facilitate glycogen catabolism during CO2 starvation. The findings and data of this work could guide future studies and attempts to engineer cyanobacteria for a sustainable production of commodity chemicals.

Abstract [sv]

Koldioxidutsläpp från mänskliga aktiviteter och utnyttjandet av fossila råvaror har satt jordens klimat ur balans. För förhindra katastrofala konsekvenser på civilisationer och naturliga miljöer behöver vi snarast utveckla alternativa lösningar som baserar sig på förnybara råvaror. En potentiell lösning är att använda genetiskt modifierade cyanobakterier som omvandlar koldioxid och solljus till värdefulla produkter, såsom bränslen och biologiskt nedbrytbar plast. Men dessa uråldriga bakterier har utvecklat ett komplext, robust och självreglerat metaboliskt nätverk för att effektivt omvandla koldioxid till sin egen biomassa, snarare än en främmande kemikalie. Detta begränsar de modifierade cyanobakteriernas produktivitet och möjligheten att använda dem för industriellt bruk. Därför krävs det utökad kunskap om hur deras metabolism är reglerad för att kunna utveckla högproduktiva stammar. Denna undersökning har utnyttjat nyligen utvecklade systembiologi-tekniker för att utforska hur metabolismen regleras i cyanobakterien Synechocystis. Resultaten från den första studien visade att Synechocystis nedreglerar anabola processer genom posttranslationell inaktivering av ribosomer när de svältes på koldioxid. Ribosomprofilering visade att ribosomer som fortfarande var aktiva tillverkade proteiner involverade i koldioxidupptag och stresshantering. Det regulatoriska proteinet thioredoxin TrxC ökade i mängd genom uppreglerad translation och utför möjligen posttranslationell redox-reglering under koldioxidstress. I den andra studien undersöktes dagliga svängningar i transkriptom, translatom och proteom med hjälp av mRNA-sekvensering, ribosomprofilering och kvantitativ proteomik. Ett stabilt proteom observerades, trots signifikanta svängningar i translation. En matematisk modell som beskrev det dynamiska förhållandet mellan proteinsyntes och proteinnivåer i cellen antydde att en långsam proteinomsättning orsakar den observerade effekten. Observationen av ett stabilt proteom antydde att omställningen mellan autotrof och heterotrof metabolism som sker mellan dag och natt regleras på posttranslationell nivå. Den tredje studien undersökte proteomallokeringsstrategier under ljus- och koldioxidbegränsad tillväxt. Integrering av proteomikdata i en cellulär proteinekonomimodell antydde att Synechocystis håller på underutnyttjade proteinreserver. Dessa reserver aktiveras förmodligen av posttranslationell reglering för att snabbt anpassa sig till förändringar i tillväxtmiljön. I den fjärde studien undersöktes posttranslationell reglering av metabolitinteraktioner med hjälp av interaktionsproteomik och enzymkinetiska analyser. Glyceraldehyd-3-fosfat aktiverade enzymet fruktos/sedoheptulosbisfosfatas, vilket föreslår en feedforward-aktiveringsmekanism i Calvin cykeln. AMP hämmar samma enzym, vilket skulle kunna styra glykogenkatabolism under koldioxidsvält. Resultaten och datan från detta arbete kan vägleda framtida forskning och försök att modifiera cyanobakterier för en hållbar produktion av råvarukemikalier.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2021. p. 84
Series
TRITA-CBH-FOU ; 2021:57
Keywords
systems biology, sustainable development, omics, ribosome profiling, RNA sequencing, proteomics, genetic engineering, bioproduction, cyanobacteria, gene regulation, metabolism, translational regulation, post-translational regulation, bioinformatics
National Category
Natural Sciences
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-305282 (URN)978-91-8040-091-6 (ISBN)
Public defence
2021-12-17, Kollegiesalen, Brinellvägen 8, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2021-11-24

Available from: 2021-11-24 Created: 2021-11-24 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Sporre, EmilKarlsen, JanSchriever, KarenAsplund-Samuelsson, JohannesJanasch, MarkusKotol, DavidStrandberg, LinnéaZeckey, LuiseSyrén, Per-OlofEdfors, Fredrik

Search in DiVA

By author/editor
Sporre, EmilKarlsen, JanSchriever, KarenAsplund-Samuelsson, JohannesJanasch, MarkusKotol, DavidStrandberg, LinnéaZeckey, LuiseSyrén, Per-OlofEdfors, FredrikHudson, Paul
By organisation
Systems BiologyCoating TechnologyApplied Physics
Bioinformatics and Computational Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 227 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf