kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
MRI-derived brain age as a biomarker of ageing in rats: validation using a healthy lifestyle intervention
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging. Karolinska Inst, Dept Neurobiol Care Sci & Soc, Stockholm, Sweden..ORCID iD: 0000-0003-3479-4243
Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London, England..ORCID iD: 0000-0003-3715-7012
Kings Coll London, Inst Psychiat Psychol & Neurosci, Dept Neuroimaging, London, England..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.ORCID iD: 0000-0002-7750-1917
Show others and affiliations
2022 (English)In: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 109, p. 204-215Article in journal (Refereed) Published
Abstract [en]

The difference between brain age predicted from MRI and chronological age (the so-called BrainAGE) has been proposed as an ageing biomarker. We analyse its cross-species potential by testing it on rats undergoing an ageing modulation intervention. Our rat brain age prediction model combined Gaussian process regression with a classifier and achieved a mean absolute error (MAE) of 4.87 weeks using cross-validation on a longitudinal dataset of 31 normal ageing rats. It was then tested on two groups of 24 rats (MAE = 9.89 weeks, correlation coefficient = 0.86): controls vs. a group under long-term environmental enrichment and dietary restriction (EEDR). Using a linear mixed-effects model, BrainAGE was found to increase more slowly with chronological age in EEDR rats ( p = 0 . 015 for the interaction term). Cox re-gression showed that older BrainAGE at 5 months was associated with higher mortality risk ( p = 0 . 03 ). Our findings suggest that lifestyle-related prevention approaches may help to slow down brain ageing in rodents and the potential of BrainAGE as a predictor of age-related health outcomes.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 109, p. 204-215
Keywords [en]
Brain ageing, Rat models, BrainAGE, Neuroimaging, Biomarker, Machine learning
National Category
Neurology Neurosciences
Identifiers
URN: urn:nbn:se:kth:diva-305624DOI: 10.1016/j.neurobiolaging.2021.10.004ISI: 000719182000004PubMedID: 34775211Scopus ID: 2-s2.0-85118834103OAI: oai:DiVA.org:kth-305624DiVA, id: diva2:1617144
Note

QC 20211206

Available from: 2021-12-06 Created: 2021-12-06 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Methods for the analysis and characterization of brain morphology from MRI images
Open this publication in new window or tab >>Methods for the analysis and characterization of brain morphology from MRI images
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Brain magnetic resonance imaging (MRI) is an imaging modality that produces detailed images of the brain without using any ionizing radiation. From a structural MRI scan, it is possible to extract morphological properties of different brain regions, such as their volume and shape. These measures can both allow a better understanding of how the brain changes due to multiple factors (e.g., environmental and pathological) and contribute to the identification of new imaging biomarkers of neurological and psychiatric diseases. The overall goal of the present thesis is to advance the knowledge on how brain MRI image processing can be effectively used to analyze and characterize brain structure.

The first two works presented in this thesis are animal studies that primarily aim to use MRI data for analyzing differences between groups of interest. In Paper I, MRI scans from wild and domestic rabbits were processed to identify structural brain differences between these two groups. Domestication was found to significantly reshape brain structure in terms of both regional gray matter volume and white matter integrity. In Paper II, rat brain MRI scans were used to train a brain age prediction model. This model was then tested on both controls and a group of rats that underwent long-term environmental enrichment and dietary restriction. This healthy lifestyle intervention was shown to significantly affect the predicted brain age trajectories by slowing the rats' aging process compared to controls. Furthermore, brain age predicted on young adult rats was found to have a significant effect on survival.

Papers III to V are human studies that propose deep learning-based methods for segmenting brain structures that can be severely affected by neurodegeneration. In particular, Papers III and IV focus on U-Net-based 2D segmentation of the corpus callosum (CC) in multiple sclerosis (MS) patients. In both studies, good segmentation accuracy was obtained and a significant correlation was found between CC area and the patient's level of cognitive and physical disability. Additionally, in Paper IV, shape analysis of the segmented CC revealed a significant association between disability and both CC thickness and bending angle. Conversely, in Paper V, a novel method for automatic segmentation of the hippocampus is proposed, which consists of embedding a statistical shape prior as context information into a U-Net-based framework. The inclusion of shape information was shown to significantly improve segmentation accuracy when testing the method on a new unseen cohort (i.e., different from the one used for training). Furthermore, good performance was observed across three different diagnostic groups (healthy controls, subjects with mild cognitive impairment and Alzheimer's patients) that were characterized by different levels of hippocampal atrophy.

In summary, the studies presented in this thesis support the great value of MRI image analysis for the advancement of neuroscientific knowledge, and their contribution is mostly two-fold. First, by applying well-established processing methods on datasets that had not yet been explored in the literature, it was possible to characterize specific brain changes and disentangle relevant problems of a clinical or biological nature. Second, a technical contribution is provided by modifying and extending already-existing brain image processing methods to achieve good performance on new datasets.

Abstract [sv]

Magnetresonansbilder (MR-bilder) används för att framställa detaljerade bilder av hjärnan utan joniserande strålning. Från en strukturell MR-bild är det möjligt att extrahera morfologiska egenskaper hos hjärnans olika regioner, såsom deras volym och form. Dessa egenskaper kan ge bättre förståelse för förändringar som hjärnan utsätts för på grund av en mängd faktorer (exempelvis miljö eller sjukdom) samt bidra till att identifiera nya bildbaserade biomarkörer för neurologiska och psykiatriska sjukdomar. Den här avhandlingens huvudsakliga mål är att bidra till kunskapen om hur bildbehandling av MR-bilder kan användas för att analysera och karaktärisera hjärnstrukturer.

De två första delarbetena som ingår i avhandlingen är djurstudier som primärt avser att använda MR-data för att analysera skillnaderna mellan två kohorter. I Artikel I behandlas MR-bilder från domesticerade och vilda kaniner för att identifiera skillnader i hjärnstruktur mellan de två grupperna. Domesticering visade sig förändra hjärnstrukturen signifikant, både den gråa hjärnsubstansens volym och den vita hjärnsubstansens integritet. I Artikel II användes MR-bilder på råttor för att träna en datadriven modell att predicera hjärnålder. Modellen testades sedan på en kontrollgrupp och en grupp råttor som under flera månader utsattes för en mer stimulerande miljö samt fick en diet med restriktioner. Den mer hälsosamma livsstilen visade sig bidra till en lägre predicerad hjärnålder genom att sakta ner råttornas åldringsprocess, jämfört med kontrollgruppen. Hjärnåldern hos unga, vuxna råttor visade sig signifikant påverka råttornas överlevnad.

Artikel III, IV och V är människostudier som föreslår djupinlärningsbaserade metoder för att segmentera (avgränsa) hjärnstrukturer som kan påverkas av neurodegeneration. Artikel III och IV i synnerhet fokuserar på U-Net-baserad 2D-segmentering av corpus callosum (CC) hos patienter med multipel skleros. I båda studierna uppmättes god träffsäkerhet för segmenteringsalgoritmen och signifikant korrelation mellan CC:s area och patientens kognitiva och fysiska nedsättning. Utöver detta visar Artikel IV genom geometrisk analys av den segmenterade CC ett signifikant samband mellan sjukdom och CC:s tjocklek och böjvinkel. I Artikel V introduceras en ny metod för automatisk segmentering av hippocampus. Metoden kombinerar U-Net-baserad segmentering med en inbyggd statistisk representation av hippocampus’ form. Metoden visade sig ge en signifikant förbättring av segmenteringskvaliteten när metoden utvärderades på en ny, tidigare osedd, kohort. Goda resultat uppmättes även i tre olika diagnosgrupper (en frisk kontrollgrupp, patienter med milda kognitiva symptom och en grupp patienter med Alzheimers sjukdom) som särskilde sig genom tre olika nivåer av atrofi av hippocampus.

Sammanfattningsvis bidrar studierna som ingår i avhandlingen till att förstärka värdet av MR-bildanalys för framsteg inom neurovetenskapen, och detta på två sätt. Genom att applicera väletablerade bildbehandlingsmetoder på dataset som ännu inte utforskats i litteraturen var det möjligt att karaktärisera specifika förändringar i hjärnans geometri och därmed lösa relevanta kliniska eller biologiska utmaningar. Vidare har studierna  bidragit till den teknologiska metodutvecklingen genom att modifiera och utvidga existerande bildbehandlingsmetoder för hjärnbilder för att uppnå goda resultat på nya dataset.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. p. 129
Series
TRITA-CBH-FOU ; 2022:9
Keywords
Brain MRI, Image Segmentation, Machine Learning, Deep Learning, Shape Analysis, Aging, Neurodegeneration, MRT av hjärnan, Bildsegmentering, Maskininlärning, Djupinlärning, Formanalys, Åldrande, Neurodegeneration
National Category
Medical Imaging Neurosciences Radiology, Nuclear Medicine and Medical Imaging
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-309321 (URN)978-91-8040-138-8 (ISBN)
Public defence
2022-03-25, T2 (Jacobssonsalen) and via Zoom (https://kth-se.zoom.us/j/68019515028), Hälsovägen 11C, vån 5, Huddinge, 13:00 (English)
Opponent
Supervisors
Note

QC 2022-02-28

Available from: 2022-02-28 Created: 2022-02-25 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Brusini, IreneSmedby, ÖrjanWang, Chunliang

Search in DiVA

By author/editor
Brusini, IreneMacNicol, EilidhSmedby, ÖrjanWang, Chunliang
By organisation
Medical Imaging
In the same journal
Neurobiology of Aging
NeurologyNeurosciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 211 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf