kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Resource Management Model for Distributed Multi-Task Applications in Fog Computing Networks
Univ Turku UTU, Dept Comp, Turku 20500, Finland..
Xi An Jiao Tong Univ, Syst Engn Inst, Xian 710049, Peoples R China..
Univ Turku UTU, Dept Comp, Turku 20500, Finland..
Univ Turku UTU, Dept Comp, Turku 20500, Finland..
Show others and affiliations
2021 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 9, p. 152792-152802Article in journal (Refereed) Published
Abstract [en]

While the effectiveness of fog computing in Internet of Things (IoT) applications has been widely investigated in various studies, there is still a lack of techniques to efficiently utilize the computing resources in a fog platform to maximize Quality of Service (QoS) and Quality of Experience (QoE). This paper presents a resource management model for service placement of distributed multitasking applications in fog computing through mathematical modeling of such a platform. Our main design goal is to reduce communication between the candidate nodes hosting different task modules of an application by selecting a group of nodes near each other and as close to the source of the data as possible. We propose a method based on a greedy principle that demonstrates a highly scalable and near-optimal performance for resource mapping problems for multitasking applications in fog computing networks. Compared with the commercial Gurobi optimizer, our proposed algorithm provides a mapping solution that obtains 93% of the performance, attributed to a higher communication cost, while outperforming the reference method in terms of the computing speed, cutting the mapping execution time to less than 1% of that of the Gurobi optimizer.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2021. Vol. 9, p. 152792-152802
Keywords [en]
Edge computing, Cloud computing, Task analysis, Resource management, Costs, Computational modeling, Delays, Greedy, fog computing, Internet of Things, modelling, optimization
National Category
Computer Systems Computer Sciences Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-305619DOI: 10.1109/ACCESS.2021.3127355ISI: 000720514400001Scopus ID: 2-s2.0-85119430313OAI: oai:DiVA.org:kth-305619DiVA, id: diva2:1617147
Note

QC 20211206

Available from: 2021-12-06 Created: 2021-12-06 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Tenhunen, Hannu

Search in DiVA

By author/editor
Tenhunen, Hannu
By organisation
Integrated devices and circuits
In the same journal
IEEE Access
Computer SystemsComputer SciencesCommunication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf