kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase-contrast X-ray tomography resolves the terminal bronchioles in free-breathing mice
KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0002-7674-6437
KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0002-8853-1441
KTH, School of Engineering Sciences (SCI), Applied Physics. Georg August Univ Gottingen, Inst Rontgenphys, Gottingen, Germany..
Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Solna, Sweden..
Show others and affiliations
2021 (English)In: Communications Physics, E-ISSN 2399-3650, Vol. 4, no 1, article id 259Article in journal (Refereed) Published
Abstract [en]

Mechanical ventilation of living animals is routinely used to achieve high-resolution pulmonary imaging, but this can damage the subject. Here, an alternative, free-breathing method enables X-ray tomography with 30 mu m resolution. Phase-contrast X-ray lung imaging has broken new ground in preclinical respiratory research by improving contrast at air/tissue interfaces. To minimize blur from respiratory motion, intubation and mechanical ventilation is commonly employed for end-inspiration gated imaging at synchrotrons and in the laboratory. Inevitably, the prospect of ventilation induced lung injury (VILI) renders mechanical ventilation a confounding factor in respiratory studies of animal models. Here we demonstrate proof-of-principle 3D imaging of the tracheobronchial tree in free-breathing mice without mechanical ventilation at radiation levels compatible with longitudinal studies. We use a prospective gating approach for end-expiration propagation-based phase-contrast X-ray imaging where the natural breathing of the mouse dictates the acquisition flow. We achieve intrapulmonary spatial resolution in the 30-mu m-range, sufficient for resolving terminal bronchioles in the 60-mu m-range distinguished from the surrounding lung parenchyma. These results should enable non-invasive longitudinal studies of native state murine airways for translational lung disease research in the laboratory.

Place, publisher, year, edition, pages
Springer Nature , 2021. Vol. 4, no 1, article id 259
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
URN: urn:nbn:se:kth:diva-306755DOI: 10.1038/s42005-021-00760-8ISI: 000728576700002Scopus ID: 2-s2.0-85120954409OAI: oai:DiVA.org:kth-306755DiVA, id: diva2:1624592
Note

QC 20220104

Available from: 2022-01-04 Created: 2022-01-04 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Preclinical X-ray imaging beyond attenuation contrast
Open this publication in new window or tab >>Preclinical X-ray imaging beyond attenuation contrast
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Preklinisk röntgenavbildning bortom attenueringskontrast
Abstract [en]

Medical imaging is a cornerstone of modern clinical practice. Here, X-ray imaging is the given choice for rapid morphological imaging with excellent spatial resolution, albeit with sensitivity often insufficient for resolving subtle pathological changes to soft tissues. Fundamentally, the sensitivity issue is due to the image contrast traditionally being based on differential X-ray attenuation (i.e., absorption and scattering) where attenuation properties of soft tissues are often very similar. Improving the sensitivity of clinical X-ray imaging therefore requires moving beyond conventional attenuation contrast.

Motivated by the above, this Thesis explores two alternative contrast mechanisms in the preclinical domain, yet with a clinical outlook: X-ray fluorescence and X-ray phase contrast. These mechanisms are demonstrated both experimentally on animal models (in vivo) and computationally on virtual anatomical phantoms (in silico). Specifically, we developed instrumentation for in vivo X-ray fluorescence imaging of mice injected with nanoparticle contrast agents, demonstrating a path towards molecular X-ray imaging with higher spatial resolution (< 0.5 mm) than established molecular modalities (e.g., PET & SPECT) and roughly 10× higher sensitivity (~ 0.1 mM) compared to conventional attenuation contrast. Furthermore, we showed that the terminal bronchioles (diameters down to ~ 60 μm) could be resolved in free-breathing mice under anesthesia using X-ray imaging boosted by phase contrast. Lastly, we showed through in silico modeling that the extension of X-ray phase contrast to human lungs could potentially enable visualization of small airways (diameters below 2 mm) which are invisible to attenuation contrast alone. In summary, this Thesis provides experimental and computational demonstrations indicating that both X-ray fluorescence and X-ray phase contrast could provide a path towards clinical X-ray imaging with improved sensitivity.

Abstract [sv]

Medicinsk avbildning är en viktig grundsten inom modern klinisk praktik. Här är röntgenavbildning det givna valet för snabb strukturell avbildning med hög upplösning, dock med en känslighet som oftast inte räcker för att upplösa små patologiska förändringar inom mjuka vävnader. Känslighetsproblemet grundar sig i att kontrasten i traditionella röntgenbilder uppstår genom skillnader i attenuering av röntgenstrålningen (p.g.a. absorption och spridning) där attenueringsegenskaperna hos olika vävnader oftast är väldigt lika. Förbättring av känsligheten hos röntgenavbildning kräver därmed att man ser bortom attenueringskontrast.

Mot denna bakgrund undersöker föreliggande avhandling två alternativa kontrastmekanismer i en preklinisk kontext men med klinisk tillämpning i sikte: röntgenfluorescens och faskontraströntgen. Dessa mekanismer demonstreras både experimentellt på djurmodeller (in vivo) samt med beräkningar på virtuella anatomiska fantomer (in silico). Bland annat demonstrerade vi experimentell avbildning med  röntgenfluorescens på möss in vivo injicerade med nanopartiklar som kontrastmedel som ett koncept för molekylär röntgenavbildning med högre spatial upplösning (< 0.5 mm) än nuvarande molekylära avbildningsmodaliteter (t.ex. PET & SPECT) samt en faktor 10× högre känslighet (~ 0.1 mM) jämfört med traditionell attenueringskontrast. Vidare visade vi att de minsta bronkiolerna (med diametrar ner till 60 μm) kunde upplösas i möss under anestesi utan mekanisk ventilering genom avbildning med faskontraströntgen. Slutligen visade vi med in silico modellering att faskontraströntgen tillämpat på människolungor skulle kunna ha potential för att visualisera små luftvägar (med diametrar under 2 mm) som är osynliga genom enbart attenueringskontrast. Sammanfattningsvis innehåller denna avhandling experiment och beräkningar som indikerar att både röntgenfluorescens och faskontraströntgen är lovande kontrastmekanismer för klinisk röntgenavbildning med förbättrad känslighet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 44
Series
TRITA-SCI-FOU ; 2022:07
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Physics; Physics, Biological and Biomedical Physics
Identifiers
urn:nbn:se:kth:diva-310183 (URN)978-91-8040-176-0 (ISBN)
Public defence
2022-04-22, Room 4204, Hus 3, Albano campus, Hannes Alfvéns väg 12, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2022-03-23 Created: 2022-03-23 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Shaker, KianHäggmark, IlianReichmann, JakobHertz, Hans

Search in DiVA

By author/editor
Shaker, KianHäggmark, IlianReichmann, JakobHertz, Hans
By organisation
Applied Physics
In the same journal
Communications Physics
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf