kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A scenario discovery approach to least-cost electrification modelling in Burkina Faso
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems.ORCID iD: 0000-0002-1565-2752
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems.ORCID iD: 0000-0002-0538-7887
World Bank Grp, Washington, DC 20433 USA..
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy Systems.ORCID iD: 0000-0002-4770-4051
Show others and affiliations
2021 (English)In: Energy Strategy Reviews, ISSN 2211-467X, E-ISSN 2211-4688, Vol. 38, p. 100714-, article id 100714Article in journal (Refereed) Published
Abstract [en]

This paper presents the first application of the scenario discovery approach in geospatial electrification modelling. 1944 electrification simulations were constructed for Burkina Faso from a combination seven input levers, including four grid-extension strategies. The scenario discovery analysis identifies a scenario described by a high grid electricity generation cost in combination with an intensification strategy for grid-extension, as most likely to lead to a high cost of electricity in Burkina Faso. Thus, to avoid such a high cost, decisions in the country could be targeted either at lowering grid electricity generation costs or to choose one of the other two gridextension strategies, or both. For each of the grid-extension strategies, a number of drivers causing a high LCOE were identified. Common drivers for all strategies were the grid electricity generation cost and discount rate. The scenario discovery approach was used to identify the key drivers of high electrification costs and their interactions, providing useful information that might not be gained from a traditional scenario-axes approach. This approach provided a structured way to analyze more parameters than found in previous electrification studies for Burkina Faso. The paper discusses on the pros compared to a traditional scenario-axes approach, such as reduced risk of perceived bias and improved ability to deal with multiple uncertain parameters, but also notes the additional computational requirements.

Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 38, p. 100714-, article id 100714
Keywords [en]
Energy access, Geospatial electrification, Scenario discovery, Burkina Faso
National Category
Energy Systems Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-307269DOI: 10.1016/j.esr.2021.100714ISI: 000741187400003Scopus ID: 2-s2.0-85114707147OAI: oai:DiVA.org:kth-307269DiVA, id: diva2:1630396
Note

QC 20220120

Available from: 2022-01-20 Created: 2022-01-20 Last updated: 2023-10-10Bibliographically approved
In thesis
1. New methods and applications to explore the dynamics of least-cost technologies in geospatial electrification modelling
Open this publication in new window or tab >>New methods and applications to explore the dynamics of least-cost technologies in geospatial electrification modelling
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Access to modern energy services is a pre-requisite for sustainable development. As such, Sustainable Development Goal (SDG) 7 aims to ensure access to affordable, reliable, sustainable and modern energy for all. However, as of 2021, 675 million people lack access to electricity, and 2.3 billion people lack access to clean cooking fuels. Electricity in particular can bring benefits to many sectors of society, including households, health facilities, educational facilities, agricultural activities and businesses. Providing such access in currently underserved areas at the lowest cost requires an integrated approach, utilizing a combination of extension of the centralized grid networks, deployment of mini-grids and stand-alone technologies.

Given the need for an integrated approach to increase access to electricity, geospatial electrification tools have been developed and used to inform policy- and decision-making. These tools are a category of energy system tools that draws on geospatial information to understand which technology to use where, depending on the local characteristics of each settlement in a country or region as well as the existing energy infrastructure. The number of geospatial electrification tools and analyses have seen a steep increase since the start of the millennia, particularly since the 2010’s. Some of these tools and analyses use simpler analytical expressions to estimate the least-cost technology in each location, whereas others provide detailed design of transmission, distribution and generation systems.  

Geospatial electrification tools and analyses are increasingly used for decision-making and planning purposes towards the achievement of universal access to electricity. This dissertation aims to advance the state of the art in geospatial electrification modelling to support electrification efforts. In particular, the thesis examines the dynamics between the three types of electricity supply technologies (grid-extension, mini-grids and stand-alone technologies) under different modelling approaches, timelines and scenarios. Three research questions based on gaps in existing literature and applications are studied and explored through four publications. Furthermore, each publication provides a case study on one of the countries with the largest electricity access gap globally, namely Burkina Faso, Ethiopia, Somalia and the Democratic Republic of the Congo (DRC).

The first research question explores how the use of scenarios and simulations in geospatial electrification modelling can be improved to better inform policy- and decision making in the field of electricity access. Lack of data is widely recognized as a key challenge in the field, as important datasets are missing, incomplete or of poor quality in many geographies. Combined with the difficulty of predicting latent electricity demand in currently underserved areas, and the numerous stakeholders in the field of electricity access, designing useful and informative scenarios can be challenging. In response to this, the first paper presents the first scenario discovery analysis in geospatial electrification modelling. In the scenario discovery approach, a large set of simulations based on variations of model parameters are computed. Next, statistical data-mining algorithms are applied to identify candidate scenarios of interest among these simulations. Using this approach, key scenarios that have the highest risk of leading to high electrification costs and scenarios that have the highest chance of low costs in Burkina Faso are identified.

The second research question focuses on the time-aspect of geospatial electrification modelling, seeking to understand how the time-line selected changes the dynamics between the least-cost electrification technologies. With few exceptions, geospatial electrification models have focused on identifying the least-cost technologies by a single year, either 2030 or earlier. However, this provides limited insight on how the system may evolve over time. In paper II, least-cost electrification options in Ethiopia are modelled in 10-year intervals until 2070. The transition between technologies over this longer time-frame are studied under different constraints and demand levels. Furthermore, paper III focuses on how time is incorporated in the model. Through a case study of Somalia, least-cost technology options are explored both until 2030 and 2040. First, the model is run similar to a perfect foresight model, identifying the least-cost solutions directly for the population and demand by 2030 and 2040 respectively. Next, the model is run myopically, first in five-year time-steps and then in one-year time-steps, to explore how the least-cost solutions by the end year of the analysis change, and the implications this has for electricity access planning. The results of both case studies highlight that shorter term planning led to relatively higher levels of stand-alone technologies, whereas longer-term planning favors mini-grids and the grid to a larger extent.

The third research question aims to shed light on the effects of different modelling approaches and model complexity in geospatial electrification modelling. Several geospatial electrification tools and frameworks have been developed and applied to inform decisions and planning towards increased electricity access. Naturally, these tools and frameworks differ in terms of modelling complexity. A comparison of published results from geospatial electrification models reveals that even in cases where these are studying the same region and similar demand levels, they identify different mixes of least-cost technology options. The fourth paper presents the first flexible geospatial electrification tool, which can provide both rapid first-pass assessments as well as more detailed analysis. Through a case study of the DRC, the effects on geospatial electrification modelling from the first-pass assessment and more detailed versions of the tool are explored. Differences in the least-cost technology mix using different algorithms in the OnSSET tool are explored, as well as the difference in data and computational requirements.

Abstract [sv]

Tillgång till moderna energitjänster är en förutsättning för hållbar utveckling. Av den anledningen syftar mål 7 av de globala målen för hållbar utveckling (SDG 7) till att säkerställa tillgång till ekonomiskt överkomlig, tillförlitlig, hållbar och modern energi för alla. 2021 saknade dock 675 miljoner människor tillgång till elektricitet och 2.3 miljarder människor tillgång till rena matlagningsbränslen. I synnerhet elektricitet kan medföra fördelar för många samhällssektorer, inklusive hushåll, hälso- och sjukvård, utbildning, jordbruksverksamheter och företag. Att öka tillgången till elektricitet till lägsta möjliga kostnad i områden som för närvarande är underförsörjda kräver ett integrerat tillvägagångssätt som utnyttjar en kombination av expansion av nationella elnät, implementering av småskaliga elnät samt fristående teknologier.

Geospatiala elektrifieringsverktyg har utvecklats utifrån behovet av ett integrerat tillvägagångssätt för att öka tillgången till elektricitet, och används för att informera policy och beslutsfattande. Dessa verktyg är en kategori av energisystemverktyg, som använder geospatial information för att förstå vilken teknik som ska användas var, beroende på både lokala förutsättningar för varje bosättning i ett land eller en region och den befintliga energiinfrastrukturen. Antalet geospatiala elektrifieringsverktyg och analyser har ökat kraftigt sedan millennieskiftet, i synnerhet sedan början av 2010-talet. Vissa av dessa verktyg och analyser använder enklare analytiska uttryck för att identifiera den teknik som är mest kostnadseffektiv på varje plats, medan andra ger mer detaljerad information kring utformningen av transmissions-, distributions- och elproduktionssystem för varje plats.

Geospatiala elektrifieringsverktyg och analyser används i allt större grad för beslutsfattande och planering i syfte att uppnå SDG 7. Denna avhandling syftar till att avancera state-of-the-art inom geospatial elektrifieringsmodellering, för att informera elektrifieringsinsatser. Avhandlingen undersöker särskilt dynamiken mellan de tre typerna av elförsörjningstekniker (expansion av nationella elnät, småskaliga elnät och fristående teknologier) under olika modelleringsmetoder, tidslinjer och scenarier. Tre forskningsfrågor, baserade på befintliga forskningsgap i litteratur och tillämpningar, studeras i fyra publikationer. Varje publikation tillhandahåller dessutom en fallstudie på ett av de länder med störst brist på tillgång till elektricitet globalt, nämligen Burkina Faso, Etiopien, Somalia och Demokratiska Republiken Kongo (DRC).

Den första forskningsfrågan utforskar hur användningen av scenarier och simuleringar i geospatiala elektrifieringsmodellering kan förbättras för att bättre informera beslutsfattande och policy inom området för tillgång till el. Brist på data är allmänt erkänt som en central utmaning inom området, då viktig data saknas, är ofullständiga eller av dålig kvalitet i många geografiska områden. Detta i kombination med svårigheter att förutspå latent elförbrukning i områden som för närvarande är underförsörjda, samt de många intressenterna inom området för tillgång till el, kan göra det utmanande att utforma användbara och informativa scenarier. Som svar på detta presenterar den första artikeln den första analysen som använder sig av ”scenario discovery” inom geospatial elektrifieringsmodellering. I metoden scenario discovery produceras en stor uppsättning simuleringar baserat på variationer av modellparametrar. Därefter tillämpas statistiska datautvinningsalgoritmer för att identifiera potentiella scenarier av intresse bland dessa simuleringar. Genom att använda denna metod identifieras nyckelscenarier som har högst risk att leda till höga elektrifieringskostnader samt högst chans till låga kostnader i Burkina Faso.

Den andra forskningsfrågan fokuserar på tidsaspekten inom geospatial elektrifieringsmodellering, och syftar till att förstå hur olika tidslinjer förändrar dynamiken mellan elektrifieringsteknologierna. Geospatiala elektrifieringsmodeller har, med några få undantag, fokuserat på att identifiera de minst kostsamma teknologierna för ett enda år, antingen 2030 eller tidigare. Detta ger dock begränsad insikt om hur systemet kan utvecklas över tid. I den andra artikeln modelleras elektrifiering i Etiopien i 10-årsintervaller fram till 2070. Övergången mellan teknologierna under denna längre tidsram studeras under olika begränsningar och nivåer på efterfrågan på el. Vidare fokuserar den tredje artikeln på hur tid inkorporeras i modellen. Genom en fallstudie av Somalia utforskas elektrifieringsalternativ både fram till 2030 och 2040. Först körs modellen liknande en modell med perfekt framsynthet, där de minst kostsamma elektrifieringslösningarna identifieras direkt för befolkningen och efterfrågan för år 2030 respektive 2040. Därefter körs modellen i kortare tidssteg, först i femårstakt och sedan i ettårstakt, för att utforska hur de minst kostsamma lösningarna vid slutet av analysen ändras och vilka konsekvenser detta har för planeringen av elektricitetsåtkomst. Resultaten från båda fallstudierna visar att kortare tidsplanering ledde till relativt högre nivåer av fristående teknologier, medan mer långsiktig planering gynnar småskaliga elnät och det centrala nätet i större utsträckning.

Den tredje forskningsfrågan syftar till att belysa effekterna av olika modelleringsmetoder och modellkomplexitet inom geospatial elektrifieringsmodellering. Flera geospatiala elektrifieringsverktyg och metoder har utvecklats och tillämpats för att informera beslut och planering för ökad elektricitetsåtkomst. Dessa verktyg och metoder skiljer sig åt när det gäller modellkomplexitet. En jämförelse av publicerade resultat från geospatial elektrifieringsmodeller visar att även i de fall där de studerar samma region och liknande efterfrågenivåer, identifierar studierna olika andelar av de tre elektrifieringsteknologierna. Den fjärde artikeln presenterar det första flexibla geospatiala elektrifieringsverktyget, som kan ge både snabba initiala bedömningar och mer detaljerade analyser i utbyte mot ökad modelleringstid. Genom en fallstudie av DRC undersöks effekterna av geospatial elektrifieringsmodellering från den snabbare initiala bedömningen samt de mer detaljerade versionerna av verktyget. Skillnader i mixen av elektrifieringsteknologier med olika algoritmer i OnSSET-verktyget undersöks, liksom skillnaden i data- och beräkningskrav.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 149
Series
TRITA-ITM-AVL ; 2023:28
National Category
Energy Systems Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-337676 (URN)978-91-8040-722-9 (ISBN)
Public defence
2023-11-01, Kollegiesalen / https://kth-se.zoom.us/j/62909942975, Brinellvägen 8, Stockholm, 14:00 (English)
Opponent
Supervisors
Available from: 2023-10-10 Created: 2023-10-10 Last updated: 2023-10-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sahlberg, AndreasKhavari, BabakNerini, Francesco Fuso

Search in DiVA

By author/editor
Sahlberg, AndreasKhavari, BabakNerini, Francesco Fuso
By organisation
Energy Systems
In the same journal
Energy Strategy Reviews
Energy SystemsEnergy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 167 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf