kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0003-0232-9937
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Applied Physical Chemistry.ORCID iD: 0000-0002-0168-2942
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0003-4889-4210
2021 (English)In: Materials, E-ISSN 1996-1944, Vol. 14, no 24, p. 7525-, article id 7525Article in journal (Refereed) Published
Abstract [en]

Inkjet printing emerged as an alternative deposition method to spin coating in the field of perovskite solar cells (PSCs) with the potential of scalable, low-cost, and no-waste manufacturing. In this study, the materials TiO2, SrTiO3, and SnO2 were inkjet-printed as electron transport layers (ETLs), and the PSC performance based on these ETLs was optimized by adjusting the ink preparation methods and printing processes. For the mesoporous ETLs inkjet-printed from TiO2 and SrTiO3 nanoparticle inks, the selection of solvents for dispersing nanoparticles was found to be important and a cosolvent system is beneficial for the film formation. Meanwhile, to overcome the low current density and severe hysteresis in SrTiO3-based devices, mixed mesoporous SrTiO3/TiO2 ETLs were also investigated. In addition, inkjet-printed SnO2 thin films were fabricated by using a cosolvent system and the effect of the SnO2 ink concentrations on the device performance was investigated. In comparison with PSCs based on TiO2 and SrTiO3 ETLs, the SnO2-based devices offer an optimal power conversion efficiency (PCE) of 17.37% in combination with a low hysteresis. This work expands the range of suitable ETL materials for inkjet-printed PSCs and promotes the commercial applications of inkjet printing techniques in PSC manufacturing.

Place, publisher, year, edition, pages
MDPI AG , 2021. Vol. 14, no 24, p. 7525-, article id 7525
Keywords [en]
inkjet printing, electron transport layers, perovskite solar cells, TiO2, SrTiO3, SnO2, cosolvent system
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-307170DOI: 10.3390/ma14247525ISI: 000738349200001PubMedID: 34947118Scopus ID: 2-s2.0-85121122275OAI: oai:DiVA.org:kth-307170DiVA, id: diva2:1631379
Note

QC 20220124

Available from: 2022-01-24 Created: 2022-01-24 Last updated: 2024-07-04Bibliographically approved
In thesis
1. Inkjet-printed Functional Materials for Perovskite Solar Cells
Open this publication in new window or tab >>Inkjet-printed Functional Materials for Perovskite Solar Cells
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Fabrication of lab-scale perovskite solar cells (PSCs) is dominated by the spin coating method, which wastes most of the precursor materials and is not compatible with large-scale manufacturing of PSCs. Inkjet printing provides a solution to upscaling of the fabrication of PSCs in a low-cost, waste-free, and sustainable way. In this thesis, we demonstrate the effectiveness of the inkjet technique in fabrication of functional materials for PSCs. The printing processes for depositing functional materials, i.e., electron transporting layers (ETLs), perovskite absorber layers as well as hole transporting layers (HTLs), are developed. We also strive to enhance the power conversion efficiency (PCE) of devices using the inkjet-printed ETLs and perovskite layers. Diverse measurements and analysis are conducted to provide insights into the enhancement mechanisms. The work undertaken in this thesis is presented as follows:

The printing processes for depositing TiO2, SrTiO3, and SnO2 ETLs are developed. A cosolvent system is found to be beneficial for the formation of effective ETLs and the eventual device performance. A PCE of 17.37% is realized for the PSC device with an inkjet-printed SnO2 ETL, outperforming both the SrTiO3-based (15.73%) and TiO2-based (12.42%) devices.

SnOx ETLs are synthesized and deposited via an inkjet printing process. The effects of the annealing temperature for post-processing of the deposited precursor layer on the properties of the resulting SnOx ETLs and their photovoltaic performance are discussed. The low-temperature amorphous SnOx ETLs outperform the high-temperature crystalline SnO2 ETLs, achieving a high PCE of 17.55%.

Elemental doping is conducted to modify SnOx ETLs. Effects of doping on the properties of the SnOx ETLs and the ETL/perovskite interfaces are investigated in detail. Cu doping exerts a negative influence on the photovoltaic performance of SnOx ETLs. Surprisingly, a tunable hysteresis, transforming from normal hysteresis to inverted hysteresis, is observed with increasing Cu doping level. Ce doping leads to substantially improved properties. The incorporation of Ce into SnOx enables increased conductivity, improved energy level alignment at the ETL/perovskite interface, and suppressed recombination within the perovskite layer. The devices with Ce-doped SnOx ETLs achieve enhanced efficiency compared to the undoped devices. Interface modification is also performed using a bilayer ETL structure to modify the SnOx/perovskite interface. The effects of inserting a nanoparticle SnO2 (NP-SnO2) layer or a nanoparticle SrTiO3 (NP-STO) layer at the SnOx/perovskite interface are discussed.

Perovskite films are deposited via inkjet printing under ambient conditions, which is a significant challenge for this humidity-sensitive material. A large-grained perovskite film with full surface coverage is realized using strategies of in-situ heat treatment, self-vapor-annealing treatment, and solvent engineering. The effects of these strategies on the nucleation and crystallization of perovskite films are discussed. A PCE of 13.44% is achieved for the all-inkjet-printed PSC device with an inkjet-printed ETL, an inkjet-printed perovskite layer, and an inkjet-printed HTL. The additive engineering strategy is also applied to hinder premature crystallization of the perovskite materials. The uniformity of the inkjet-printed perovskite layer is significantly improved although it is not directly conducive to photovoltaic performance.

Overall, this thesis provides guidance in fabrication of effective functional materials via inkjet printing in a scalable and sustainable way.

Abstract [sv]

Tillverkning av laboratorieskalig pervovskita solceller (PSCs) domineras av spinnbeläggningsmetoden, vilken kasserar det mesta av prekursormaterialen och är inte kompatibel med storskalig production av PSCs. Bläckstråleutskrift tillhandahåller en lösning för att skala upp tillverkningen av PSCs till en låg kostnad, avfallsfritt, och hållbart sätt. I denna avhandling visar vi effektiviteten hos bläckstråletekniken vid tillverkning av funktionella material för PSCs. Utskriftsprocesserna utvecklas för deposition av funktionella material, dvs elektrontransponerande lager (ETLs), perovskitabsorberande lager såväl som transporterande lager (HTLs). Vi strävar också efter att förbättra effektomvandlingseffektiviteten (PCE) hos enheter som använder bläckstråletryckta ETLs och perovskitskikt. Olika mätningar och analyser genomförs för att tillhandahålla insikter i förbättringsmekanismerna. Det arbete som har vidtagits i denna avhandling framgår nedan:

Tryckprocesserna för insättning av TiO2, SrTiO3, och SnO2 ETLs utvecklas. Ett samlösningsmedel har visat sig vara gynnsamt för bildandet av effektiva ETLs och den enhetens eventuella prestanda. En PCE på 17,37% realiseras för PSC-enheten med en bläckstråleuttryckt SnO2 ETL, som överträffar både de SrTiO3-baserade (15,73%) och TiO2-baserade (12,42%) enheterna.

SnOx ETL syntetiseras och deponeras via en bläckstråleutskriftsprocess. Effekterna av glödgningstemperaturen för efterbearbetning av det avsatta prekursorskiktet på egenskaperna hos de resulterande SnOx ETL:erna och deras fotovoltaiska prestanda diskuteras. De låg temperatur amorfa SnOx ETL:erna överträffar de högtemperaturkristallina SnO2 ETL:erna och uppnår en hög PCE på 17,55 %.

Elementär dopning utförs för att modifiera SnOx ETL. Effekter av dopning på egenskaperna hos SnOx ETL och ETL/perovskite-gränssnitten undersöks i detalj. Cu-dopning utövar ett negativt inflytande på den fotovoltaiska prestandan hos SnOx ETL. Överraskande nog observeras en avstämbar hysteres, som övergår från normal hysteres till inverterad hysteres, med ökande Cu-dopningsnivå. Ce-dopning leder till väsentligt förbättrade egenskaper. Införlivandet av Ce i SnOx möjliggör ökad konduktivitet, förbättrad energinivåinriktning vid ETL/perovskit-gränssnittet och undertryckt rekombination inom perovskitskiktet. Enheterna med Ce-dopade SnOx ETL uppnår ökad effektivitet jämfört med de odopade enheterna. Gränssnittsmodifiering utförs också med hjälp av en tvåskikts ETL-struktur för att modifiera SnOx/perovskite-gränssnittet. Effekterna av att infoga ett nanopartikel SnO2 (NP-SnO2) lager eller ett nanopartikel SrTiO3 (NP-STO) lager vid SnOx/perovskite gränssnittet diskuteras.

Perovskitfilmer avsätts via bläckstråleutskrift under omgivande förhållanden, vilket är en betydande utmaning för detta fuktkänsliga material. En storkornig perovskitfilm med full yttäckning realiseras med hjälp av strategier för in-situ värmebehandling, självångglödgningsbehandling och lösningsmedelsteknik. Effekterna av dessa strategier på kärnbildning och kristallisering av perovskitfilmer diskuteras. En PCE på 13,44 % uppnås för den helt bläckstråleskrivna PSC-enheten med en bläckstråleskriven ETL, ett bläckstråletryckt perovskitskikt och en bläckstråleskriven HTL. Den additiva ingenjörsstrategin tillämpas också för att förhindra för tidig kristallisering av perovskitmaterialen. Likformigheten hos det bläckstråletryckta perovskitskiktet förbättras avsevärt även om det inte direkt bidrar till fotovoltaisk prestanda.

Sammantaget ger denna avhandling vägledning i tillverkning av effektiva funktionella material via bläckstråleutskrift på ett skalbart och hållbart sätt.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 70
Series
TRITA-ITM-AVL ; 2024:14
Keywords
inkjet printing, perovskite solar cells, electron transporting layers, low-temperature processing, elemental doping, interface modification, perovskite nucleation and crystallization, bläckstråleutskrift, perovskitsolceller, elektrontransporterande lager, lågtemperaturbearbetning, elementär dopning, gränssnittsmodifiering, perovskitkärnbildning och kristallisering
National Category
Other Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-346589 (URN)978-91-8040-970-4 (ISBN)
Public defence
2024-06-17, https://kth-se.zoom.us/j/66714540228, 10:00 (English)
Opponent
Supervisors
Available from: 2024-05-23 Created: 2024-05-22 Last updated: 2024-06-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Lu, DongliZhang, WeiKloo, LarsBelova, Lyubov

Search in DiVA

By author/editor
Lu, DongliZhang, WeiKloo, LarsBelova, Lyubov
By organisation
Materials Science and EngineeringApplied Physical Chemistry
In the same journal
Materials
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 97 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf