kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Leading-edge pressure gradient effect on boundary layer receptivity to free-stream turbulence
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0003-2186-9277
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0002-8665-2995
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0002-3251-8328
2022 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 935, article id A30Article in journal (Refereed) Published
Abstract [en]

Free-stream turbulence (FST) induced boundary layer transition is an intricate physical process that starts already at the leading edge (LE) with the LE receptivity process dictating how the broad spectrum of FST scales is received by the boundary layer. The importance of the FST integral length scale, apart from the turbulence intensity, has recently been recognized in transition prediction but a systematic variational study of the LE pressure gradient has still not been undertaken. Here, the LE pressure gradient is systematically varied in order to quantify its effect on the transition location. To this purpose, we present a measurement technique for accurate determination of flat-plate boundary layer transition location. The technique is based on electret condenser microphones which are distributed in the streamwise direction with high spatial resolution. All time signals are acquired simultaneously and post-processed giving the full intermittency distribution of the flow over the plate in a few minutes. The technique is validated against a similar procedure using hot-wire anemometry measurements. Our data clearly shows that the LE pressure gradient plays a decisive role in the receptivity process for small integral length scales, at moderate turbulence intensities, leading to variations in the transitional Reynolds number close to 40 %. To our knowledge, this high sensitivity of LE pressure gradient to transition has so far not been reported and our experiments were therefore partly repeated using another LE to ensure set-up independence and result repeatability.

Place, publisher, year, edition, pages
Cambridge University Press (CUP) , 2022. Vol. 935, article id A30
Keywords [en]
boundary layer receptivity, transition to turbulence
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-308646DOI: 10.1017/jfm.2022.19ISI: 000750189400001Scopus ID: 2-s2.0-85124690664OAI: oai:DiVA.org:kth-308646DiVA, id: diva2:1637921
Note

QC 20220215

Available from: 2022-02-15 Created: 2022-02-15 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Effects of free-stream turbulence and three-dimensional roughness on boundary layer transition
Open this publication in new window or tab >>Effects of free-stream turbulence and three-dimensional roughness on boundary layer transition
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

External disturbances such as free-stream turbulence (FST), and isolated three-dimensional roughness are strong disturbance sources to the laminar boundary layers (BLs), which can lead to a rapid transition to turbulence. The transition process eventuates to increase in skin-friction coefficient and heat transfer rate and hence, both of the aforementioned disturbance sources have practical importance. The current thesis is an experimental work, with investigations carried out in low-turbulence wind-tunnels to study the influence of these disturbance sources on boundary layer transition. Today, in FST transition, it is known that the turbulence intensity and the streamwise integral length scale in the free stream are the two influential characteristics that decide the transition onset, location and the extent. Unsteady, elongated streaks in the streamwise direction dominate this scenario, whose amplitudes and spanwise scales are set by the FST conditions prevalent at the leading edge (LE). In reality, a LE is unavoidable and the influence of the inherent LE pressure gradient region on BL transition was always doubted and not investigated in detail. The first part of the current thesis explores the FST transition scenario for a wide range of FST conditions and pressure gradients providing an input to the future transition prediction models. An important result in this thesis is that the entire energy spectrum needs to be known if an accurate prediction of the transition onset is desired, i.e. the LE condition in terms of characteristic length scale and turbulence intensity is not sufficient. In the second part, isolated roughness-induced transition is investigated thoroughly by changing the roughness height in micrometer precision at various diameters. In the previous experimental studies, the investigations were performed by altering the free-stream velocity at a fixed aspect ratio and hence modifying the base flow. In contrast, here, the aspect ratio of the roughness element is altered in an extensive range and the influence of the aspect ratio on the roughness Reynolds number that causes transition is studied without affecting the base flow. Instabilities that occur prior to the transition onset were examined in detail by performing flow visualization experiments. Moreover, interaction of secondary disturbances like Tollmien-Schlichting waves with the roughness was investigated.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 61
Series
TRITA-SCI-FOU ; 2022:18
Keywords
boundary-layer transition, intermittency, free-stream turbulence, electret microphones, isolated roughness, sinuous instability, varicose instability
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-312756 (URN)978-91-8040-229-3 (ISBN)
Public defence
2022-06-10, U1, Brinellvägen 26, Stockholm, 10:15 (English)
Opponent
Supervisors
Note

QC 220523

Available from: 2022-05-24 Created: 2022-05-23 Last updated: 2025-02-09Bibliographically approved
2. Experimental studies on laminar boundary layers: instability, transition and control
Open this publication in new window or tab >>Experimental studies on laminar boundary layers: instability, transition and control
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Experimentella studier av laminära gränsskikt: instabilitet, omslag och kontroll
Abstract [en]

The laminar-turbulent transition in boundary layers is a pivotal process in fluid dynamics, with significant implications for engineering applications. Typical examples are aviation and energy systems, where this process has a tremendous impact on large-scale effects like friction drag and heat transfer. As such, boundary layers and their transition to turbulence have been an active topic of research for more than 100 years, making considerable progress in understanding the underlying physics. For example, we know today that the transition process is not unique. However, even though many phenomena are now understood, significant challenges remain. The present thesis aims to shed light on some aspects of boundary layer transition and control thereof.

We present a series of experimental studies focusing on the instability, transition, and control of laminar boundary layers. Flow instabilities are generally the precursor of turbulence and are therefore studied first, where three phenomena are investigated separately. Natural transition of a boundary layer often occurs due to two-dimensional Tollmien-Schlichting waves. In higher background disturbance flows, the dominating instability in the flow are streamwise streaky structures that govern the transition to turbulence. The third type of investigated flow instability are the structures that develop in the boundary layer behind an isolated roughness element.

If the instabilities in the flow grow beyond a critical amplitude, they will break down to turbulence. A considerable section of the thesis is dedicated to boundary-layer transition under free-stream turbulence. Even though this topic is of great interest for applications such as turbomachinery, it is still not possible to accurately predict the location where transition happens for given flow conditions, even for strongly simplified cases like flat plates. Amongst other topics, we investigate effects that might influence this transition process and have been overlooked previously. Furthermore, phenomena that happen during the transition process, such as the emergence and development of turbulent spots, are studied under various free-stream turbulence conditions.

Finally, we explore passive control strategies to delay the transition to turbulence. This includes the assessment of the feasibility of established techniques to use in realistic engineering applications. Here, flow control devices are designed with the goal to delay transition on the fuselage of an aircraft. On the other hand, new approaches to accomplish transition delay are investigated, where the unfavorable direct disturbance of the boundary layer is minimized, leading to potentially improved transition delay.

Abstract [sv]

Omslaget från laminär till turbulent strömning i gränsskikt är en central process inom strömningsmekaniken med betydande innebörd i tekniska tillämpningar. Typiska exempel på tillämpningar återfinns framför allt inom flygsektorn och inom olika energisystem där omslaget har en stor inverkan på både friktionsmotstånd och värmeöverföring. Gränsskikt och dess omslag till turbulens har varit ett aktivt forskningsområde i över 100 år och därmed har betydande framsteg gjorts för den fysikaliska förståelsen av denna process. Idag vet vi exempelvis att omslaget kan ta olika vägar till ett turbulent tillstånd, men trots många insikter kvarstår betydande utmaningar. Denna avhandling syftar till att belysa några aspekter på omslaget i gränsskikt och dess kontroll.

Vi presenterar en serie experimentella studier med fokus på instabiliteter, omslag och kontroll av laminära gränsskikt. I allmänhet kan man säga att turbulens föregås av flödesinstabiliteter och därför fokuserar vi inledningsvis på tre kända störningar. Vid låg bakgrundstörning domineras omslaget av två-dimensionella vågor, även kallade Tollmien-Schlichting vågor. Om nivån av bakgrundsstörningen ökar kommer omslaget i stället att domineras av tillväxten av hög- och låghastighetsstråk i strömningsriktningen. Den tredje typen av flödesinstabilitet som undersöks här är de strukturer som utvecklas bakom ett isolerat ytråhetselement i gränsskiktet.

Om instabiliteterna i flödet växer över en kritisk amplitud kommer störningarna att initiera omslaget till turbulens. Avhandlingen handlar till stor del om hur friströmsturbulens (hög bakgrundsstörning) påverkar omslaget i gränsskikt. Trots de många tillämpningar som finns, som exempelvis turbomaskiner, så är det fortfarande svårt att förutspå var omslaget sker på idealiserade geometrier. I detta avhandlingsarbete har vi bland annat undersökt effekter som kan påverka denna typ av omslag och som tidigare har förbisetts. Vidare studeras de fenomen som inträffar under omslagsprocessen, såsom uppkomst och utveckling av turbulenta fläckar.

Slutligen utforskar vi passiva kontrollmetoder för att senarelägga omslaget till turbulens. Detta inkluderar att bedöma genomförbarheten av etablerade tekniker för användning i verkliga tillämpningar. Här har virvelgeneratorer för flödeskontroll designats med målet att senarelägga omslaget till turbulens på en flygplanskropp. Dessutom har nya tillvägagångssätt undersökts för att senarelägga omslaget, där den destabiliserande effekten av virvelgeneratorerna i sig har minimerats. Detta kan potentiellt leda till förbättrad kontroll och fördröjning av omslaget.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 231
Series
TRITA-SCI-FOU ; 2024:50
Keywords
boundary layers, flow instabilities, roughness element, laminar-turbulent transition, free-stream turbulence, transition delay, miniature-vortex generators, gränsskikt, flödesinstabiliteter, råhetselement, laminär-turbulent omslag, friströmsturbulens, fördröjning av omslaget, miniatyrvirvelgeneratorer
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-357098 (URN)978-91-8106-096-6 (ISBN)
Public defence
2024-12-19, Kollegiesalen, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC241204

Available from: 2024-12-04 Created: 2024-12-03 Last updated: 2025-04-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Mamidala, Santhosh B.Weingärtner, AndréFransson, Jens

Search in DiVA

By author/editor
Mamidala, Santhosh B.Weingärtner, AndréFransson, Jens
By organisation
Fluid Mechanics and Engineering Acoustics
In the same journal
Journal of Fluid Mechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 504 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf