Open this publication in new window or tab >>
2024 (English) Doctoral thesis, comprehensive summary (Other academic)
Abstract [en] The need for resource efficient transport is increasing as environmental concerns are growing ever more important. One of the most important vehicle properties when it comes to fuel consumption is the mass of the vehicle, with heavier vehicles requiring more energy and therefore more fuel to operate. A key strategy when designing more efficient vehicles for transport is thus to make the vehicles as light as possible.
During operation, different vehicles are have to fulfill a number of different requirements, such as protecting passengers and cargo from the elements, being safe in case of an accident and maintaining a comfortable sound level for the passengers. These requirements are often conflicting, especially in a lightweight context. It is well known that stiff and lightweight structures tend to vibrate more when exposed to dynamic loads, severely degrading the acoustic performance.
The aim of this doctoral thesis is to investigate design methodologies that can be used to design lightweight components with good structural and acoustic properties at an early stage of the design process, where the design freedom is large. Key is the fact that response to both static and dynamic loading is taken into account simultaneously instead of sequentially, this is to prevent the emergence of design solutions with very good structural performance, but whose poor dynamic behaviour requires mass-intensive sub-systems to be added at a later stage.
The investigated methodology is based on using topology optimization to minimize the mass of a structure subject to constraints on the response to static and dynamic loads. An initial study extends the use Topology Optimization of Binary Structures (TOBS) method to problems with vibration constraints. The TOBS method is later extended to allow for the concurrent optimization of the core topology and face sheet thickness of a sandwich structure. This new sandwich optimization method is then used to minimize the mass of a sandwich beam subjected to a static load.
Finally, the concurrent sandwich optimization is used to minimize the mass of a sandwich beam subjected to simultaneous static and harmonic loads, at both single frequencies and in frequency bands.
The results show that the new concurrent sandwich optimization method offer significant improvements over optimizing the core topology with fixed face sheet thickness, resulting in a mass reduction of up to 22\%. The mass of the resulting structure is also shown to be very dependent on how strict the static constraint is, especially when compared to how sensitive it is to the dynamic constraint at single frequencies. For dynamic constraint imposed over frequency bands, the cost of lowering the response depends on the frequency band. If the band contains the fundamental resonance frequency, the mass is very sensitive to how strict the constraint is.
The multifunctional design methodology presented in this doctoral thesis offers design tools which can be used to design lightweight vehicle components early in the design process without locking the design into solutions that require the addition of heavy sub-systems later in the design process.
Abstract [sv] Behovet av resurseffektiv transport ökar allt eftersom miljöfrågor blir allt viktigare. En av de viktigaste fordonsegenskaperna när det kommer till bränsleförbrukning är fordonets massa, där tyngre fordon kräver mer energi och därför mer bränsle för att använda. En nyckelstrategi vid design av mer effektiva transportfordon är således att göra fordonen så lätta som möjligt.
Fordon måste vid användning uppfylla en mängd olika krav, till exempel att skydda passagerare och last från väder och vind, vara säkra vid en olycka och hålla en bekväm ljudnivå för passagerarna. Dessa krav står ofta i konflikt med varandra, särskilt i en lättviktskontext. Det är välkänt att styva och lätta strukturer tenderar att vibrera mer när de utsätts för dynamisk last, vilket kraftigt försämrar den akustiska prestandan.
Målet med denna avhandling är att undersöka designmetodologier som kan användas för att designa lättviktskomponenter med goda strukturella och akustiska egenskaper i ett tidigt skede av designprocessen, när friheten att göra designförändringar är stor. Stor vikt läggs vid att hänsyn tas till statisk och dynamisk last samtidigt istället för sekventiellt, vilket förhindrar uppkomsten av designlösningar med god strukturell prestanda, men vars försämrade akustiska egenskaper kräver massintensiv efterbehandling i ett senare skede av designprocessen.
Den undersökta designmetodologin baseras på att använda topologioptimering för att minimera en strukturs massa, med bivillkor som begränsar responsen på statisk och dynamisk last. En första studie utökar optimeringsmetoden topologioptimering för binära strukturer (topology optimization of binary structures, TOBS) till problem med vibrationsbivillkor. TOBS-metoden utökas sedan till att tillåta samtidig optimering av kärntopologin och täckskiktstjockleken hos en sandwichstruktur. Den nya sandwichoptimeringsmetoden används sedan för att minimera massan hos en sandwichbalk utsatt för statisk last.
Den samtidiga sandwichoptimeringen används slutligen för att minimera massan hos en sandwichbalk utsatt för samtidig statisk och dynamisk last, både för enskilda frekvenser och i frekvensband.
Resultaten visar att den nya metoden erbjuder signifikanta förbättringar jämfört med att bara optimera kärntopologin med fixerad täckskiktstjocklek, med minskning av massan med upp till 22%. Den slutliga strukturens massa visar sig också vara väldigt beroende av hur strängt det statiska bivillkoret är, speciellt vid jämförelse med det dynamiska bivillkoret vid enskilda frekvenser. Om den dynamiska excitationen sker över ett frekvensband, så är kostnaden för att sänka responsen beroende av frekvensbandet. Om frekvensbandet täcker den fundamentala resonansfrekvensen så är massan särskilt känslig för hur stringent bivillkoret är.
Den multifunktionella designmetodologin som presenteras i denna doktorsavhandling erbjuder designverktyg som kan användas till att designa fordonskomponenter med låg vikt tidigt i designprocessen utan att låsa fast designen i lösningar som kräver tung efterbehandling senare i designprocessen.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 189
Series
TRITA-SCI-FOU ; 2024:22
National Category
Vehicle and Aerospace Engineering
Identifiers urn:nbn:se:kth:diva-346041 (URN) 978-91-8040-915-5 (ISBN)
Public defence
2024-05-23, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
2024-05-022024-04-302025-02-14 Bibliographically approved