kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Open Model for Generating High Resolution Wind Power Production Scenarios
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0003-4089-3379
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0002-8189-2420
2021 (English)In: 2021 IEEE Madrid PowerTech, PowerTech 2021 - Conference Proceedings, Institute of Electrical and Electronics Engineers (IEEE) , 2021, article id 9495067Conference paper, Published paper (Refereed)
Abstract [en]

Efficient integration of variable renewable energy (VRE) such as wind power into power systems requires methods for power system operation planning that account for VRE uncertainty and variability. This has motivated extensive research into unit commitment (UC) and optimal power flow (OPF) formulations with VRE uncertainty. However, these formulations are often tested using significantly simplified representations of VRE production. We seek to address this issue by providing a model for generating realistic wind power scenarios using real production and forecast data. The scenarios are generated using 5-min production and 30-min forecast data for real wind farms from Australia. The model captures the empirical distribution of the forecast errors and the covariance between different wind farms. The high time resolution of the production data also allows the recreation of the high-frequency (5-min) component of wind power production. The resulting model is openly available, and can be used to generate wind power scenarios for use in formulations for operation planning of power systems (UC/OPF) considering wind uncertainty and intra-hour variability. The scenarios can be tailored according to preferences for, e.g., the number of wind farms and their geographical dispersion. 

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2021. article id 9495067
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-308995DOI: 10.1109/PowerTech46648.2021.9495067ISI: 000848778000313Scopus ID: 2-s2.0-85112372363OAI: oai:DiVA.org:kth-308995DiVA, id: diva2:1638963
Conference
IEEE Madrid PowerTech, PowerTech 2021 Madrid 28 June 2021 through 2 July 2021
Note

QC 20220221

Part of proceedings: ISBN 978-166543597-0

Available from: 2022-02-18 Created: 2022-02-18 Last updated: 2022-09-27Bibliographically approved
In thesis
1. Power System Operation Planning and Wind Power Curtailment: Efficient Methods for Power System Scheduling and Integration Studies of Variable Renewable Energy
Open this publication in new window or tab >>Power System Operation Planning and Wind Power Curtailment: Efficient Methods for Power System Scheduling and Integration Studies of Variable Renewable Energy
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To reduce carbon dioxide emissions, variable renewable energy (VRE) sources are replacing conventional fossil-based power plants for electricity generation. Due to the variability and uncertainty of weather dependent VRE sources, there can be situations when it is not possible to accommodate all the available VRE production, and VRE sources have to be curtailed. The need to curtail VRE production can arise, among other reasons, due to low electricity demand, lack of transmission capacity, or when operational security requires conventional units to remain online to provide intertia or reserves for balancing production and consumption. 

Managing VRE curtailment and integrating VRE sources into power systems in an efficient manner require tools for long-term power system planning and short-term power system operation planning, e.g., day-ahead scheduling which is handled by electricity markets. This thesis develops tools for both long-term and short-term power system planning, with a focus on estimating the need for VRE curtailment in future power systems and methods that achieve efficient operation of power systems by allowing VRE curtailment. 

Regarding long-term power system planning, an open source dispatch model for the Nordic power system, ODIN, is developed and used to assess the future need for VRE curtailment arising from wind power expansion mostly in the north of Sweden. Regarding short-term power system operation, further developments of the previously proposed power-based formulation for unit commitment (UC) are made, extending the formulation to include reserves which can better deal with wind power variability and uncertainty, as well as contingencies such as line and generator outages. Also, different situations when VRE curtailment can be efficient and lead to reduced system costs and carbon dioxide emissions are investigated, and an open source model for generating realistic wind power production scenarios for use in UC formulations is developed. Finally, a power-based version of ODIN is implemented to investigate the benefits of using the power-based formulation for production cost models used for long-term power system planning.

The methods and models developed in this thesis can contribute to more efficient long-term planning and short-term operation of power systems, particularly in the Nordic region. Excessive VRE curtailment should be avoided through efficient long-term planning, but in the short term the flexibility of VRE production should be used to operate the power system in a way that minimizes system costs.

Abstract [sv]

För att minska koldioxidutsläppen ersätts konventionella icke förnybara kraftverk av förnybara energikällor. Som en följd av variabiliteten och osäkerheten hos väderberoende förnybar elproduktion kan det uppstå situationer då det inte är möjligt att använda all den förnybara elen, vilket gör det nödvändigt att spilla förnybar el. Dessa situationer kan uppstå t.ex. på grund av låg efterfrågan på el, brist på överföringskapacitet, eller därför att konventionella kraftverk behöver vara igång för att bidra med svängmassa eller reserver för att hantera störningar i elsystemet och balansera produktion och förbrukning. 

En effektiv integrering av förnybar elproduktion i elnätet kräver verkyg för både långsiktig planering för utbyggnad av elsystemet och för kortsiktig driftsplanering, t.ex. dagen-före planering som sker på elmarknader. I den här avhandlingen utvecklas verktyg både för långsiktig och kortsiktig planering av elsystem, med fokus på att uppskatta det framtida behovet av att spilla förnybar elproduktion och att utveckla metoder som kan ge en effektivare drift at elsystemet genom att tillåta spill av förnybar el. 

För att underlätta långsiktig planering av elsystemet utecklas en fritt tillgänglig produktionskostnadsmodell för det nordiska elsystemet, ODIN, som sedan används för att uppskatta spillet som uppkommer som en följd av den stora utbyggnaden av vindkraft i framför allt norra Sverige. För driftsplanering av elsystem vidareutvecklas den effektbaserade varianten av unit-commitment problemet, genom att inkludera reserver för att hantera osäkerhet och variabilitet från vindkrafsproduktion samt störningar i elsystemet, såsom bortfall av ledningar och kraftverk. Dessutom undersöks situationer då spill av förnybar el kan leda till lägre driftskostnader och koldioxidutsläpp och därför vara fördelaktigt. Vidare utvecklas en fritt tillgänglig modell för att generera realistiska vindkraftsscenarier som kan användas i unit commitment formuleringar. Till sist implementeras en effektbaserad version av ODIN för att undersöka fördelarna med att använda effektbaserad modellering för långsiktig planering av elsystem. 

Dessa studier och verkyg kan bidra både till bättre långsiktig planering och mer effektiv kortsiktig driftsplanering av elsystem, framför allt inom Norden. Ett alltför stort spill av förnybar el bör undvikas genom långsiktigt planering av utbyggnaden av elsystemet, men på kort sikt bör flexibiliteten från förnybar elproduktion utnyttjas för att minimera driftskostnaderna.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. x + 105
Series
TRITA-EECS-AVL ; 2022:12
Keywords
Variable renewable energy, wind power integration, production cost model, power-based unit commitment, wind power scenarios
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Energy Systems
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-309027 (URN)978-91-8040-140-1 (ISBN)
Public defence
2022-03-30, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20220218

Available from: 2022-02-18 Created: 2022-02-18 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Nycander, ElisSöder, Lennart

Search in DiVA

By author/editor
Nycander, ElisSöder, Lennart
By organisation
Electric Power and Energy Systems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 87 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf