kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A High-Fidelity Flow Solver for Unstructured Meshes on Field-Programmable Gate Arrays: Design, Evaluation, and Future Challenges
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0003-3374-8093
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0001-5452-6794
Paderborn University.
KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for High Performance Computing, PDC.ORCID iD: 0000-0002-5020-1631
Show others and affiliations
2022 (English)In: HPCAsia2022: International Conference on High Performance Computing in Asia-Pacific Region, Association for Computing Machinery (ACM) , 2022, p. 125-136Conference paper, Published paper (Refereed)
Abstract [en]

The impending termination of Moore’s law motivates the search for new forms of computing to continue the performance scaling we have grown accustomed to. Among the many emerging Post-Moore computing candidates, perhaps none is as salient as the Field-Programmable Gate Array (FPGA), which offers the means of specializing and customizing the hardware to the computation at hand.

In this work, we design a custom FPGA-based accelerator for a computational fluid dynamics (CFD) code. Unlike prior work – which often focuses on accelerating small kernels – we target the entire Poisson solver on unstructured meshes based on the high-fidelity spectral element method (SEM) used in modern state-of-the-art CFD systems. We model our accelerator using an analytical performance model based on the I/O cost of the algorithm. We empirically evaluate our accelerator on a state-of-the-art Intel Stratix 10 FPGA in terms of performance and power consumption and contrast it against existing solutions on general-purpose processors (CPUs). Finally, we propose a data movement-reducing technique where we compute geometric factors on the fly, which yields significant (700+ Gflop/s) single-precision performance and an upwards of 2x reduction in runtime for the local evaluation of the Laplace operator.

We end the paper by discussing the challenges and opportunities of using reconfigurable architecture in the future, particularly in the light of emerging (not yet available) technologies.

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM) , 2022. p. 125-136
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-309190DOI: 10.1145/3492805.3492808Scopus ID: 2-s2.0-85122641610OAI: oai:DiVA.org:kth-309190DiVA, id: diva2:1639939
Conference
HPCAsia2022: International Conference on High Performance Computing in Asia-Pacific Region
Note

QC 20220223

Available from: 2022-02-22 Created: 2022-02-22 Last updated: 2024-04-22Bibliographically approved
In thesis
1. Direct Numerical Simulation of Turbulence on Heterogenous Computer Systems: Architectures, Algorithms, and Applications
Open this publication in new window or tab >>Direct Numerical Simulation of Turbulence on Heterogenous Computer Systems: Architectures, Algorithms, and Applications
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Direct numerical simulations (DNS) of turbulence have a virtually unbounded need for computing power. To carry out these simulations, software, computer architectures, and algorithms must operate as efficiently as possible to amortize the large computational cost. However, in a computing landscape increasingly incorporating heterogeneous computer systems, changes are necessary. In this thesis, we consider how DNS can be carried out efficiently on upcoming heterogeneous computer systems. This work relates to developing algorithms for upcoming heterogeneous computer architectures, overcoming software challenges associated with large-scale DNS on these platforms, and applying these developments to new flow cases that were previously too costly to carry out. We consider in particular the spectral element method for DNS and evaluate how this method maps to field-programmable gate arrays, graphics processing units, as well as conventional processors. We also consider the issue of trading arithmetic operations for less communication, reducing the cost of solving the linear systems that arise in the spectral element method. Our developments are incorporated into the spectral element framework Neko, enabling Neko to strong-scale efficiently on the largest supercomputers in the world. Finally, we have carried out several DNS such as the simulation of a Flettner rotor in a turbulent boundary layer and simulating Rayleigh-Bénard convection at very high Rayleigh numbers. The developments in this thesis enable the high-fidelity simulation of turbulence on emerging computer systems with high parallel efficiency and performance.

Abstract [sv]

Direct numerisk simulering (DNS) av turbulens kräver enorma mängder datorkraft. För att utföra simuleringar som DNS krävs det att mjukvara, datorarkitekturer och algoritmer samverkar så effektivt som möjligt tillsammans. Idag förändras superdatorer snabbt och inkoporerar nya heterogena datorarkitekturer. Detta innebär att nya tillvägagångssätt är nödvändiga för att tillgodogöra sig all beräkningskraft. I den här avhandlingen fokuserar vi på DNS på heterogena, storskaliga, datorsystem för att möjligöra nya simuleringar av turbulenta flöden. För att nå detta mål undersöker vi nya datorarkitekturer, analyserar och förbättrar de numeriska metoderna och algoritmerna vi använder och applicerar slutligen våra utvecklingar på nya simuleringar av turbulens. Vi fokuserar speciellt på den spektrala element metoden (SEM) för DNS och undersöker hur den beter sig på eng. field-programmable gate arrays, grafikkort och konventionella processorer. Vi bidrar även med analys av hur vi löser det linjära systemet som utgör kärnan i SEM för att bättre utnyttja den tillgängliga datorkraften och minska mängden data som behöver överföras. Våra förbättringar inkorporeras i SEM lösaren Neko och möjligör att Neko kan skala effektivt på de största superdatorerna i världen. Vi använder sedan detta ramverk för att genomföra flera storskaliga simuleringar. Vi genomför den första simuleringen av en Flettner rotor och dess interaktion med turbulent skjuvströmning samt simulering av Rayleigh-Bénard konvektion i en cylindrisk domän vid mycket höga Rayleigh tal. Avhandlingen möjligör detaljerad numerisk simulering av turbulens med hög skalbarhet och prestanda i dagens föränderliga datorlandskap. 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. p. 54
Series
TRITA-EECS-AVL ; 2024:36
Keywords
High Performance Computing, Turbulence, Computational Fluid Dynamics, Heterogenous Computer Architectures, Högprestandaberäkningar, Turbulens, Numerisk Strömingsmekanik, Heterogena Datorarkitekturer
National Category
Computer Sciences Fluid Mechanics
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-345851 (URN)978-91-8040-910-0 (ISBN)
Public defence
2024-05-24, https://kth-se.zoom.us/s/61541415709, Kollegiesalen, Brinellvägen 6, Stockholm, 09:15 (English)
Opponent
Supervisors
Funder
Swedish e‐Science Research Center, SESSI
Note

QC 20240423

Available from: 2024-04-23 Created: 2024-04-22 Last updated: 2025-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Karp, MartinPodobas, ArturJansson, NiclasSchlatter, PhilippMarkidis, Stefano

Search in DiVA

By author/editor
Karp, MartinPodobas, ArturJansson, NiclasSchlatter, PhilippMarkidis, Stefano
By organisation
Computational Science and Technology (CST)Centre for High Performance Computing, PDCFluid Mechanics and Engineering Acoustics
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 273 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf