kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Nanostructure of the Oxide Formed on Fe-10Cr-4Al Exposed in Liquid Pb
Department of Physics, Chalmers University of Technology, Göteborg SE-412 96, Sweden.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0002-4446-1111
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0001-6047-9496
Department of Physics, Chalmers University of Technology, Göteborg SE-412 96, Sweden.
2022 (English)In: Microscopy and Microanalysis, ISSN 1431-9276, E-ISSN 1435-8115, Vol. 28, no 4, p. 1321-1334Article in journal (Refereed) Published
Abstract [en]

An Fe-10Cr-4Al alloy containing reactive elements developed for application in high-temperature liquid lead environments was analyzed after exposure in 600 and 750°C lead with dissolved oxygen for 1,000-2,000 h. Atom probe tomography, transmission electron microscopy, and X-ray scattering were all used to study the protective oxide formed on the surface. Exposure at 750°C resulted in a 2-μm thick oxide, whereas the 600°C exposure resulted in a 100-nm thick oxide. Both oxides were layered, with an Fe-Al spinel on top, and an alumina layer toward the metal. In the 600°C exposed material, there was a Cr-rich oxide layer between the spinel and the alumina. Metallic lead particles were found in the inner and middle parts of the oxide, related to pores. The combination of the experimental techniques, focusing on atom probe tomography, and the interpretations that can be done, are discussed in detail.

Place, publisher, year, edition, pages
Oxford University Press (OUP) , 2022. Vol. 28, no 4, p. 1321-1334
Keywords [en]
atom probe tomography, FeCrAl, liquid lead, oxide, reactive elements
National Category
Metallurgy and Metallic Materials
Identifiers
URN: urn:nbn:se:kth:diva-309175DOI: 10.1017/S1431927621000337ISI: 000775729400001PubMedID: 33888175Scopus ID: 2-s2.0-85104824113OAI: oai:DiVA.org:kth-309175DiVA, id: diva2:1640102
Note

QC 20250324

Available from: 2022-02-23 Created: 2022-02-23 Last updated: 2025-03-24Bibliographically approved
In thesis
1. Development of Alumina Forming Alloys for High-Temperature Energy Applications
Open this publication in new window or tab >>Development of Alumina Forming Alloys for High-Temperature Energy Applications
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Liquid lead as heat transfer fluid presents attractive features for future power technologies, such as next-generation nuclear reactors, thermal solar power, and thermal storage. Liquid lead has excellent heat transfer properties well suited for operating at high temperatures. While today's water-cooled reactors operate at a temperature of approximately 300°C, the next-generation lead-cooled nuclear power could operate up to 600°C, significantly increasing the energy conversion efficiency. However, it is well known that liquid lead is a corrosive medium for stainless steels, especially at temperatures above 500°C.

To address the corrosion issues, aluminium oxide-forming ferritic steels have been thoroughly studied in liquid lead environments and have shown good oxidation properties. Traditionally, these steels are alloyed with 3-6 wt% aluminium and 12-24 wt% chromium, and iron as balance, hence the denotation FeCrAl steel. However, the high addition of aluminium and chromium results in poor weldability and renders them susceptible to embrittlement in the desired temperature range. Therefore, to address the welding and embrittlement issues, a new group of FeCrAl materials was developed in recent years with only 10 wt% chromium and 4 wt% aluminium, which in this work is referred to as Fe-10Cr-4Al. These alloys have shown good ductility and good corrosion properties in liquid lead up to 550°C.

In this work, the Fe-10Cr-4Al steels have been further optimised and exposed to liquid lead at temperatures up to 900°C. In addition, detailed studies of the oxidation properties and structure formed on the steel surfaces were conducted using various analytical techniques. The findings showed that the most promising Fe-10Cr-4Al steel, so far, has suitable corrosion properties up to 800°C. However, although these steels have improved mechanical and welding properties, they do not meet the requirements set for the desired high-temperature energy applications.

Therefore, another new family of alloys was developed, namely alumina-forming martensitic steels. This development aimed to combine the superior corrosion resistance of the aluminium oxide with the mechanical properties inherent in the martensitic structure. The development was done using thermodynamic modelling, empirical corrosion studies and detailed analytical methods. The results showed that these martensitic steels have a corrosion resistance exceeding even the best1optimised Fe-10Cr4-Al steel in liquid lead at temperatures up to at least 550°C.

In parallel, alumina-forming austenitic steels were also developed. The aim was to find a suitable composition for these materials that not only provide good corrosion protection in liquid lead, but also good weldability, good phase stability, and good formability. These austenitic materials have shown, in general, good corrosion properties in liquid lead up to 600°C. However, the combination of elevated Ni, Al and Mn levels resulted in embrittlement after ageing at 600°C. In addition, a series of austenitic alumina-forming welding materials were also developed within this work. The aim was to produce a material that does not suffer from the embrittlement commonly observed in ferritic welds. Bend testing of this welding material has, so far, indicated ductile behaviour with good formability.

Abstract [sv]

Flytande bly som värmeöverföringsmedium är en attraktiv teknolog för framtidens energiproduktion. Här har man tekniker som till exempel nästa generationens kärnkraft, termisk solenergi och termisk lagring. Smält bly har värmeöverföringsegenskaper som är väl lämpade för applikationer vid höga temperaturer. Dagens vattenkylda reaktorer arbetar vid en temperatur på ca 300°C, medan framtidens kärnkraft med smält bly kan arbeta upp till 600°C vilket medför ett ökat elenergiutbyte. Tyvärr är flytande bly väldigt korrosivt mot rostfritt stål, särskilt vid temperaturer över 500°C.

För att hantera denna korrosion har man utvecklat nyare stål som bildar aluminiumoxid och påvisat goda oxidationsegenskaper. Traditionellt har dessa stål legerats med 3-6 vikt% aluminium och 12-24 vikt% krom med järn som balans, därav beteckningen FeCrAl. Den höga halten av aluminium och krom resulterar dessvärre i dålig svetsbarhet och till försprödning i det aktuella temperaturintervallet. För att bemöta svets och försprödnings problematiken utvecklades en ny grupp av FeCrAl-material med 10 vikt% krom och 4 vikt% aluminium som i det här arbetet går under beteckningen Fe-10Cr-4Al. Dessa legeringar har uppvisat god duktilitet och goda korrosionsegenskaper upp till 550°C.

I det här arbetet har sammansättningen hos dessa material optimerats ytterligare och exponerats i flytande bly med temperaturer upp till 900°C. Exponeringarna har följts upp med genomgående studier av oxidstrukturen som bildades på stålytorna. Resultaten visade att det hittills mest lovande Fe-10Cr-4Al-stålet har lämpliga korrosionsegenskaper upp till 800°C. Även om dessa stål har fått förbättrad mekaniska egenskaper och svetsegenskaper så når dem inte upp till de krav som ställs som ställs för de högtemperatur processer som önskas.

Därför utvecklades ännu en ny familj av legeringar nämligen aluminiumoxidbildande martensitiska stål. Målet med denna utveckling var att kombinera det överlägsna korrosionsmotståndet hos aluminiumoxiden med de mekaniska egenskaper som är inneboende i den martensitiska strukturen. Utvecklingen har gjorts med hjälp av termodynamisk modellering, empiriska korrosionsstudier och detaljerade analytiska metoder. Resultaten visade att dessa martensitiska stål har ett korrosionsmotstånd som överträffar även det bäst optimerade Fe-10Cr4- Al-stålet i flytande bly vid temperaturer upp till åtminstone 550°C.3Parallellt med detta arbete utvecklades också aluminiumoxidbildande austenitiska stål. Syftet var att hitta en lämplig sammansättning för dessa material som ger goda korrosionsegenskaper i flytande bly, bra svetsbarhet och fasstabilitet samt goda bearbetningsegenskaper som exempelvis smide och valsning. Dessa austenitiska material har visat lovande korrosionsegenskaper i smält bly upp till 600°C. Men kombinationen av förhöjda halter av Ni, Al och Mn gav resulterade i en viss försprödning efter åldring vid 600°C. En serie av austenitiska aluminiumoxidbildande svetsmaterial har också utvecklades i det här arbetet med avsikten att ta fram ett material som inte har de sprödhetsproblemen som uppstår i ferritiska svetsar. Bockprovning av detta svetsmaterial har än så länge indikerat ett duktilt beteende med god formbarhet.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2021. p. 65
Series
TRITA-CBH-FOU ; 2021:37
National Category
Metallurgy and Metallic Materials
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-325818 (URN)978-91-7873-999-8 (ISBN)
Public defence
2021-10-12, F3, Lindstedsvägen 26, Stockholm, 10:00
Opponent
Supervisors
Funder
Swedish Research CouncilSwedish Energy AgencyEU, Horizon 2020
Note

QC 2023-04-25

Available from: 2023-04-25 Created: 2023-04-16 Last updated: 2024-10-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Dömstedt, PeterSzakalos, Peter

Search in DiVA

By author/editor
Dömstedt, PeterSzakalos, Peter
By organisation
Surface and Corrosion Science
In the same journal
Microscopy and Microanalysis
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 67 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf