kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of Random Grain Structure on Spin-Hall Nano-Oscillator Modal Stability
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.ORCID iD: 0000-0002-7484-9694
Northwestern Polytech Univ, Sch Microelect, Xian 710072, Peoples R China..
Univ Gothenburg, Dept Phys, S-40530 Gothenburg, Sweden..
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electronics and Embedded systems.ORCID iD: 0000-0001-6459-749X
2022 (English)In: IEEE Electron Device Letters, ISSN 0741-3106, E-ISSN 1558-0563, Vol. 43, no 2, p. 312-315Article in journal (Refereed) Published
Abstract [en]

Spin-Hall nano-oscillators are a promising class of microwave spintronic devices with potential applications in RF/microwave communication and neuromorphic computing. The nano-constriction spin-Hall nano-oscillators (NC-SHNO) have relatively high power, narrow linewidth, and low drive current. Several synchronization schemes e.g. arrays of spin-wave coupled oscillators have been proposed for more stable operation and higher output power. For such arrays, it is crucial to have good oscillator stability and small device-to-device variability. Here, a micromagnetic simulation technique is proposed that includes realistic material properties and hence enables variability and modal stability to be investigated. It is demonstrated, using both measurements and simulation, that the presence of physical grains in the free magnetic layer can induce multiple oscillation modes or frequency sidebands. Our investigation could help in the development of more stable NC-SHNOs that would enable oscillator arrays with stronger synchronization.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 43, no 2, p. 312-315
Keywords [en]
Micromagnetic simulations, microwave measurements, modal stability, SHNO, spintronics
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-309001DOI: 10.1109/LED.2021.3137952ISI: 000748371400040Scopus ID: 2-s2.0-85122071395OAI: oai:DiVA.org:kth-309001DiVA, id: diva2:1640438
Note

QC 20220329

Available from: 2022-02-24 Created: 2022-02-24 Last updated: 2023-09-20Bibliographically approved
In thesis
1. Dynamics and Intrinsic Variability of Spintronic Devices
Open this publication in new window or tab >>Dynamics and Intrinsic Variability of Spintronic Devices
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Dynamik och Inneboende Variabilitet hos Spinntronik-enheter
Abstract [en]

Spintronics is a scientific domain focusing on utilizing electron spin for information processing. This is the element that distinguishes it from electronics, which only utilizes the charge of electrons. A common purpose of spintronic devices is to implement additional functionalities to state-of-the-art Complementary Metal-Oxide Semiconductor (CMOS) technology. The aim of this work was to assess the intrinsic variabilities of Nano-Constriction Spin Hall Nano-Oscillators (NC-SHNOs) and the dynamics of Perpendicular Magnetic Tunnel Junctions (pMTJs). 

The first part of the thesis focuses on NC-SHNO and two-dimensional arrays. They are nanometer-sized microwave oscillators, allowing for a wide frequency tuning range, and are compatible with CMOS Back End Of Line (BEOL). These devices are based on a heavy metal/ferromagnetic bilayer. Environmental conditions during processing, fabrication techniques, and temperature of operation can all create variabilities in the device's functioning. Crystallization grains naturally form during the sputtering of the metals. Atomic Force Microscope (AFM) characterization showed the grains being of different shapes, about 30 nm in size. Here, the aim was to develop a simulation technique based on importing the measured grain structure into micromagnetic simulations. Their results match the device-to-device variability and multi-modal behavior found in microwave measurements. Moreover, the presence of grains influences the synchronization of the arrays.

The second part of this work focuses on pMTJ. These non-volatile memory elements have two metastable states, parallel (P) and antiparallel (AP), separated by an energy barrier Eb. Here, the aim was to show their potential as True Random Number Generators (TRNGs). A pulse-activated measurement set-up was used to realize random bitstreams. The randomness was confirmed by the National Institute of Standards and Technology Statistical Testing Suite (NIST-STS). After one whitening Exclusive OR (XOR) stage, all tests were successfully passed.

The assessment was completed with the development of a model describing both macrospin and domain wall-mediated magnetization reversals, i.e. switching between P and AP. The analysis of the reversal dynamics was carried out with micromagnetic simulations and String Method calculations. As expected, Eb is lowered by the field and by decreasing the device size. This allows for faster fluctuations, marking the device as a potential TRNG. Both the switching attempt frequency and the energy barrier were explored by finite-temperature micromagnetic simulations.

This thesis shows the potential of realistic simulations combined with measurements to assess oscillators. It also shows the efficacy of spintronic devices as 10s-MHz TRNG.

Abstract [sv]

Spinntronik är ett vetenskapligt område som fokuserar på att utnyttja elektronens spin för informationsbehandling. Denna aspekt skiljer spinntronik från elektronik, som endast utnyttjar elektronens laddning. En vanlig syfte med spintronik-komponenter är att implementera ytterligare funktionalitet i toppmodern Complementary Metal-Oxide Semiconductor (CMOS) -teknologi. Syftet med detta arbete var att utvärdera de inneboende variabiliteterna hos Nano-Constriction Spin Hall Nano-Oscillators (NC-SHNOs) och dynamiken hos Perpendicular Magnetic Tunnel Junctions (pMTJs).

Den första delen av avhandlingen fokuserar på NC-SHNOs och tvådimensionella matriser. De är nanometerstora mikrovågsgeneratorer som möjliggör ett brett frekvensområde och är kompatibla med CMOS Back End Of Line (BEOL). Dessa komponenter är baserade på ett tungmetall/ferromagnetisk bilager. Miljöförhållanden under bearbetning, tillverkningstekniker och driftstemperatur kan alla skapa variabiliteter i komponentens funktion. Kristallisationskorn bildas naturligt under metallskiktens sputtring. Karaktärisering med Atomic Force Microscope (AFM) visade att kornen hade olika former och var ungefär 30 nm i storlek. Här var målet att utveckla en simuleringsmetod baserad på att importera den uppmätta kornstrukturen i mikromagnetiska simuleringar. Deras resultat matchar variabiliteten mellan enheter och det multimodala beteendet som återfinns i mikrovågsmätningar. Dessutom påverkar närvaron av korn synkroniseringen av matriserna.

Den andra delen av detta arbete fokuserar på pMTJs. Dessa icke-flyktiga minneselement har två metastabila tillstånd, parallella (P) och antiparallella (AP), separerade av en energibarriär Eb. Här var målet att visa deras potential som sanna slumptalsgeneratorer (TRNGs). En uppsättning pulsmätningar användes för att generera slumpmässiga bitströmmar. Slumpmässigheten bekräftades av National Institute of Standards and Technology Statistical Testing Suite (NIST-STS). Efter en XOR-steg för att göra strömmen mer vit passerades alla tester framgångsrikt.

Studien slutfördes med utvecklingen av en modell som beskriver både makrospinn och domänvägg-medierade magnetiseringsrevereseringar, det vill säga övergångar mellan P- och AP-tillstånd. Analysen av reverseringssdynamiken utfördes med mikromagnetiska simuleringar och String Method-beräkningar. Som förväntat minskas Eb av fältet och genom att minska komponentens storlek. Detta möjliggör snabbare fluktuationer och identifierar komponenten som en potentiell TRNG. Både försöksfrekvensen för reversering och energibarriären utforskades med hjälp av mikromagnetiska simuleringar vid ändlig temperatur.

Resultaten som presenteras här visar nödvändigheten av noggrann hänsyn till lagrens brister för att skapa övertygande neuromorfiska enheter. Dessutom bevisar detta arbete spinntronik-enheters effektivitet som TRNGs med en frekvens på 10s-MHz.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. xxvi, 104
Series
TRITA-EECS-AVL ; 2023:65
Keywords
Spintronics, micromagnetic simulations, SHNO, MTJ, microwave measurements, realistic simulations, low-temperature measurements, fabrication, grains, Spinntronik, mikromagnetiska simuleringar, SHNO, MTJ, mikrovågsmätningar, realistiska simuleringar, lågtemperaturmätningar, nanotillverkning, korn
National Category
Nano Technology Condensed Matter Physics Probability Theory and Statistics
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-336768 (URN)978-91-8040-702-1 (ISBN)
Public defence
2023-10-13, Ka-Sal B, Electrum https://kth-se.zoom.us/j/64577443824, Kistagången 16, Kista, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2017-04196
Available from: 2023-09-20 Created: 2023-09-20 Last updated: 2023-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Capriata, Corrado Carlo MariaMalm, B. Gunnar

Search in DiVA

By author/editor
Capriata, Corrado Carlo MariaMalm, B. Gunnar
By organisation
Electronics and Embedded systems
In the same journal
IEEE Electron Device Letters
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 203 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf