kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deterministic Integration of hBN Emitter in Silicon Nitride Photonic Waveguide
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.ORCID iD: 0000-0002-7004-9665
KTH, School of Engineering Sciences (SCI), Applied Physics. Phelma, Physical engineering for photonics and microelectronics, Grenoble Institute of Technology, 3 Parvis Louis Néel - CS 50257 - 38016 Grenoble Cedex 1, France.
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.ORCID iD: 0000-0003-2080-9897
KTH. Phelma, Physical engineering for photonics and microelectronics, Grenoble Institute of Technology, 3 Parvis Louis Néel - CS 50257 - 38016 Grenoble Cedex 1, France.
Show others and affiliations
2021 (English)In: Advanced Quantum Technologies, ISSN 2511-9044, Vol. 4, no 6, p. 2100032-, article id 2100032Article in journal (Refereed) Published
Abstract [en]

Hybrid integration provides an important avenue for incorporating atom-like solid-state single-photon emitters into photonic platforms that possess no optically-active transitions. Hexagonal boron nitride (hBN) is particularly interesting quantum emitter for hybrid integration, as it provides a route for room-temperature quantum photonic technologies, coupled with its robustness and straightforward activation. Despite the recent progress of integrating hBN emitters in photonic waveguides, a deterministic, site-controlled process remains elusive. Here, the integration of selected hBN emitter in silicon nitride waveguide is demonstrated. A small misalignment angle of 4° is shown between the emission-dipole orientation and the waveguide propagation direction. The integrated emitter maintains high single-photon purity despite subsequent encapsulation and nanofabrication steps, delivering quantum light with zero delay second order correlation function (Formula presented.). The results provide an important step toward deterministic, large scale, quantum photonic circuits at room temperature using atom-like single-photon emitters.

Place, publisher, year, edition, pages
Wiley , 2021. Vol. 4, no 6, p. 2100032-, article id 2100032
Keywords [en]
deterministic integration, hBN emitters, hexagonal boron nitride, hybrid quantum photonics, silicon nitride, single photons, waveguides, III-V semiconductors, Integration, Nitrides, Particle beams, Photons, Silicon photonics, Hexagonal boron nitride (h-BN), Misalignment angles, Photonic waveguides, Second-order correlation functions, Silicon nitride waveguides, Single photon emitters, Waveguide propagation, Optical waveguides
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-309239DOI: 10.1002/qute.202100032ISI: 000647883300001Scopus ID: 2-s2.0-85105181252OAI: oai:DiVA.org:kth-309239DiVA, id: diva2:1641268
Note

QC 20220301

Available from: 2022-03-01 Created: 2022-03-01 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Integrated Photonics for Quantum Optics
Open this publication in new window or tab >>Integrated Photonics for Quantum Optics
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Integrerad Fotonik för Kvantoptik
Abstract [en]

Quantum physics allows us a vision of Nature's forces that bind the world, all its seeds and sources. After decades of primarily scientific research, we've arrived at a stage in time where quantum technology can be applied to practical problems and add value outside the field. Four pillars of quantum technologies are commonly identified: quantum computing, quantum simulation, quantum communication, and quantum sensing. For example, quantum computers will allow us to model quantum systems beyond our current capabilities, and quantum communication allows us to protect information unconditionally based on physics. Quantum sensing will enable us to measure our reality beyond classical limits.

Within all of these areas, optical photons play a unique role. In quantum computer implementations (e.g. photonic, trapped ion, or superconducting) photons can serve as a computational resource, for system read-out, or for linking distant hardware nodes. Quantum communication can only be realized via photons, utilizing the low-loss propagation of photons in optical fibers, on photonic devices as well as in free space. In quantum sensing and metrology, squeezed light can be used to go beyond the current limits of sensing methods. Therefore, the quantum technology field crucially relies on precise and efficient methods to generate, steer, manipulate and detect photons.

This dissertation discusses work in integrated photonic circuits, self-assembled semiconductor quantum dot devices, and superconducting nanowire single--photon detectors.

We integrate multiple materials on a silicon nitride platform, including Cu2O as a platform for solid-state Rydberg physics, WS2 to improve non-linear light-generation within Si3N4, and hBN as an excellent single-photon emitter.We demonstrate optically active quantum dots as single-photon emitters in the telecom C-band and their compatibility with commercial telecom equipment.We strain-control the fine-structure splitting of these devices, which is required for future quantum interference-based protocols.

Finally, we study superconducting nanowire single-photon detectors (SNSPD) and combine them with photonic micro-electromechanical systems (MEMS), establishing a cryo-compatible, reconfigurable photonic platform.

Abstract [sv]

Kvantfysiken ger oss en möjlighet att skåda naturens krafter som binder världen, alla dess frön och källor. Efter decennier av främst vetenskaplig forskning har vi nått det stadie i tiden där kvantteknologi kan tillämpas på praktiska problem och tillföra värde utanför akademin. Vanligtvis identifieras fyra pelare av kvantteknologier: kvantberäkning, kvantsimulering, kvantkommunikation och kvantsensorer. Till exempel kommer kvantdatorer att tillåta oss att modellera kvantsystem utöver våra nuvarande möjligheter, och kvantkommunikation tillåter oss att skydda information villkorslöst baserat på fysikens lagar samtidigt som kvantavkänning kommer att göra det möjligt för oss att mäta vår verklighet bortom klassiska gränser. 

Inom alla dessa områden spelar optiska fotoner en unik roll. I kvantdatorimplementationer (t.ex. fotoniska, fångade joner eller supraledande) kan fotoner fungera som en beräkningsresurs, för systemavläsning eller för att länka avlägsna hårdvaru-noder. Kvantkommunikation kan endast förverkligas via fotoner, på grund av den låga förlusten av fotoner i optiska fibrer, på fotoniska enheter såväl som i fri luft. Inom kvantavkänning och metrologi kan klämt ljus användas för att överskrida de nuvarande gränserna för avkänningsmetoder. Därför förlitar sig kvantteknikområdet på exakta och effektiva metoder för att generera, styra, manipulera och detektera fotoner.

Den här avhandlingen diskuterar arbete i integrerade fotoniska kretsar, självmonterade halvledarkvantpricksenheter och supraledande nanotrådsdetektorer för enstaka fotoner.

Vi integrerar flera material på en kiselnitridplattform, inklusive Cu2O som en plattform för rydbergs fysik i fast tillstånd, WS2 för att förbättra icke-linjär ljusgenerering inom Si3N4 och hBN som utmärkt singelfoton-sändare. Vi demonstrerar optiskt aktiva kvantprickar som enstaka foton sändare i telekom C-bandet och deras kompatibilitet med kommersiell telekomutrustning. Vi kontrollerar finstruktursdelningen av dessa enheter med hjälp av töjning, vilket krävs för framtida kvantinterferensbaserade protokoll.

Slutligen studerar vi supraledande nanotrådsdetektorer för enstaka fotoner och kombinerar dem med fotoniska mikroelektromekaniska system, vilket skapar en kryokompatibel, konfigurerbar fotonisk plattform.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 93
Series
TRITA-SCI-FOU ; 2022:17
Keywords
integrated photonics, single-photons, single-photon sources, quantum dots, single-photon detectors, SNSPD, integrerad fotonik, enstaka fotoner, enstaka fotonkällor, kvantprickar, enstaka fotondetektorer, SNSPDs
National Category
Condensed Matter Physics
Research subject
Physics, Optics and Photonics; Physics
Identifiers
urn:nbn:se:kth:diva-310978 (URN)978-91-8040-226-2 (ISBN)
Public defence
2022-06-10, https://kth-se.zoom.us/s/62366725480, U61, Brinellvägen 26, Stockholm, 15:00 (English)
Opponent
Supervisors
Available from: 2022-05-12 Created: 2022-05-10 Last updated: 2022-09-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Elshaari, Ali W.Skalli, AnasGyger, SamuelSchweickert, LucasSvedendahl, MikaelSteinhauer, StephanZwiller, Val

Search in DiVA

By author/editor
Elshaari, Ali W.Skalli, AnasGyger, SamuelNurizzo, MartinSchweickert, LucasSvedendahl, MikaelSteinhauer, StephanZwiller, Val
By organisation
Quantum and BiophotonicsApplied PhysicsKTH
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 160 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf