Vehicle structures such as train floors or car roofs are usually built as multi-layer panels, where a foam is placed between a load-carrying structure and an interior panel. The foam adds acoustical and thermal performance, but very little weight. In most contributions introducing foams for acoustic treatment, these have been considered isotropic, with acoustic losses mainly dependingon properties in the thickness direction. Another mechanism investigated here is the possibilityfor the acoustic flow in the foam to change from acting only in the thickness direction but rather to be re-directed to also travel in-plane, where dimensions are substantially larger than in the thickness direction, permitting more losses as the wave travels through the material. That kind of effect would result in higher acoustic losses without increasing the thickness of the vehicle panel and better use of the allowable space to achieve acoustic and functional requirements, i.e. a better functional density. A first step is to investigate how the absorption properties of an anisotropic foam differs from an isotropic foam. The chosen approach is to use an analytical micro-modelto calculate the dynamic drag impedance (flow resistivity on micro-scale) for an anisotropic opencell foam material. Based on a simple micro-scale geometry of Kelvin cells, it has been shown that simple cell alterations to the micro-geometry, such as stretching, twisting and tilting results in an anisotropic foam structure. The anisotropic flow resistivity tensor is not diagonal and uniform, but different directions can have different magnitudes and it can display off-diagonal coupling terms. The influence of such micro-scale distortions on the flow resistivity, and on the resulting sound absorption is investigated with the purpose of improving the acoustic performance without adding volume. Future steps include to modify the functional density and tailor the sound transmission loss to a specific application.
QC 20220315