kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
1-mu m spatial resolution in silicon photon-counting CT detectors
KTH, School of Engineering Sciences (SCI), Physics, Physics of Medical Imaging.ORCID iD: 0000-0002-3326-944x
KTH, School of Engineering Sciences (SCI), Physics, Physics of Medical Imaging. Karolinska Univ Hosp, BioClinicum, MedTechLabs, Solna, Sweden.ORCID iD: 0000-0002-5092-8822
Linköping University, Department of Electrical Engineering, Linköping.
KTH, School of Engineering Sciences (SCI), Physics, Physics of Medical Imaging. Karolinska Univ Hosp, BioClinicum, MedTechLabs, Solna, Sweden.ORCID iD: 0000-0002-3039-9791
2021 (English)In: Journal of Medical Imaging, ISSN 2329-4302, E-ISSN 2329-4310, Vol. 8, no 6, article id 063501Article in journal (Refereed) Published
Abstract [en]

Purpose: Spatial resolution for current scintillator-based computed tomography (CT) detectors is limited by the pixel size of about 1 mm. Direct conversion photon-counting detector prototypes with silicon- or cadmium-based detector materials have lately demonstrated spatial resolution equivalent to about 0.3 mm. We propose a development of the deep silicon photon-counting detector which will enable a resolution of 1  μm, a substantial improvement compared to the state of the art.

Approach: With the deep silicon sensor, it is possible to integrate CMOS electronics and reduce the pixel size at the same time as significant on-sensor data processing capability is introduced. A Gaussian curve can then be fitted to the charge cloud created in each interaction.We evaluate the feasibility of measuring the charge cloud shape of Compton interactions for deep silicon to increase the spatial resolution. By combining a Monte Carlo photon simulation with a charge transport model, we study the charge cloud distributions and induced currents as functions of the interaction position. For a simulated deep silicon detector with a pixel size of 12  μm, we present a method for estimating the interaction position.

Results: Using estimations for electronic noise and a lowest threshold of 0.88 keV, we obtain a spatial resolution equivalent to 1.37  μm in the direction parallel to the silicon wafer and 78.28  μm in the direction orthogonal to the wafer.

Conclusions: We have presented a simulation study of a deep silicon detector with a pixel size of 12  ×  500  μm2 and a method to estimate the x-ray interaction position with ultra-high resolution. Higher spatial resolution can in general be important to detect smaller details in the image. The very high spatial resolution in one dimension could be a path to a practical implementation of phase contrast imaging in CT.

Place, publisher, year, edition, pages
SPIE, the international society for optics and photonics , 2021. Vol. 8, no 6, article id 063501
National Category
Radiology, Nuclear Medicine and Medical Imaging Medical Imaging
Identifiers
URN: urn:nbn:se:kth:diva-309507DOI: 10.1117/1.jmi.8.6.063501ISI: 000773685200002PubMedID: 34805448Scopus ID: 2-s2.0-85125706296OAI: oai:DiVA.org:kth-309507DiVA, id: diva2:1642411
Note

QC 20220620

Available from: 2022-03-06 Created: 2022-03-06 Last updated: 2025-02-09Bibliographically approved
In thesis
1. An Event-Reconstructing Silicon Detector for 1 µm Resolution Spectral Computed Tomography
Open this publication in new window or tab >>An Event-Reconstructing Silicon Detector for 1 µm Resolution Spectral Computed Tomography
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Computed tomography (CT) is a medical imaging modality in which cross-sectional images of the human body are created using x-rays. Commercial CT scanners utilize energy-integrating detectors to measure the x-ray attenuation. However, photon-counting detectors with energy-discriminating abilities have started to emerge. In a photon-counting spectral detector, photons can be counted individually and the photon energy is registered using energy thresholds. In contrast to energy-integrating detectors, which integrate all photon energies during a measurement interval, this allows for an improved detector performance including an increased signal-to-noise ratio, higher spatial resolution, and improved spectral imaging.

One of the current photon-counting systems that is being evaluated for clinical use is the deep silicon detector developed by the Physics of Medical Imaging group at KTH. This Thesis is based on the deep silicon detector concept and focuses on methods to improve the performance of a silicon photon-counting detector for CT and how these might facilitate event reconstruction. In the first part of the Thesis, three different methods to improve the detector performance are presented. One of the methods describes how information about the charge cloud distribution can be used to improve the spatial resolution. With the proposed method, subpixel resolution can be achieved, corresponding to a spatial resolution equivalent of approximately 1 μm in the most accurate dimension. A silicon detector with double-sided readout electrodes is further proposed which enables estimating the time of the photon interaction with high accuracy. The resulting time resolution of approximately 1 ns can potentially be utilized to identify interactions that originate from the same incident photon. With double-sided readout, it is also possible to dramatically improve the spatial resolution in the direction across the silicon wafer thickness. It is also proposed to utilize an adjustable shaping time in the readout electronics to decrease the electronic noise level. This can be used to improve the detector performance with respect to dose efficiency and power consumption.

In the second part of the Thesis, a method to perform event reconstruction is presented. The method consists of a framework of likelihood functions that are used to estimate the incident photon energy and primary interaction position. Based on this framework, the ability of estimating the photon energy and primary interaction position is evaluated for a case in which the incident photons are assumed to be well-separated in time.

In summary, there is potential in increasing the performance with respect to the spatial, temporal, and energy resolution in silicon photon-counting detectors for CT and the results suggest that event reconstruction might be possible in the future.

Abstract [sv]

Datortomografi (CT) är en bildgivande medicinsk teknik som används för att skapa tvärsnittsbilder av människokroppen med hjälp av röntgenstrålning. Kommersiella CT-scannrar använder energiintegrerande detektorer för att mäta röntgenstrålarnas attenuering. Fotonräknande detektorer med spektral upplösningsförmåga har dock börjat introduceras. I en sådan detektor kan fotonerna räknas individuellt och fotonenergin registreras med hjälp av energitrösklar. Jämfört med energiintegrerande detektorer, där energin från de infallande fotonerna integreras under ett visst mätintervall, möjliggör detta en förbättrad detektorprestanda såsom ökat signal-brusförhållande, högre spatiell upplösning samt förbättrad spektral avbildning.

Ett av de fotonräknande system som just nu utvärderas kliniskt är deep silicon-detektorn som utvecklats av gruppen inom Medicinsk Bildfysik vid KTH. Denna avhandling utgår ifrån konceptet för deep silicon-detektorer och studerar metoder för att förbättra prestandan hos en fotonräknande kiseldetektor för CT samt hur dessa skulle kunna möjliggöra rekonstruktion av fotoninteraktioner. I avhandlingens första del presenteras tre olika metoder för att förbättra detektorns prestanda. En av metoderna beskriver hur information om laddningsmolnets fördelning i detektorn kan användas för att förbättra den spatiella upplösningen. Med den föreslagna metoden kan subpixelupplösning uppnås, motsvarande en spatiell upplösning på ungefär 1 μm i den dimension där upplösningen är som högst. För att kunna uppskatta tiden för varje fotoninteraktion med hög noggrannhet föreslås en kiseldetektor med dubbelsidiga avläsningselektroder. Denna konfiguration resulterar i en tidsupplösning på åtminstone 1 ns som potentiellt kan användas för att identifiera interaktioner som härrör från samma infallande foton. Med dubbelsidig avläsning är det också möjligt att förbättra den spatiella upplösningen i riktningen tvärsöver kiselskivans tjocklek. För att påverka den elektroniska brusnivån föreslås användandet av en justerbar pulsbredd i detektorns avläsningselektronik. Detta kan förbättra detektorns doseffektivitet samt energiförbrukning.

I avhandlingens andra del presenteras en metod för att utföra rekonstruktion av fotoninteraktioner. Metoden består av ett ramverk av sannolikhetsfunktioner som används för att estimera den infallande fotonenergin och den primära interaktionspositionen. Baserat på detta ramverk utvärderas förmågan att uppskatta fotonenergin för ett fall där de infallande fotonerna antas vara väl åtskilda i tiden.

Sammanfattningsvis finns det potential i att förbättra prestandan med avseende på spatiell, tids- och energiupplösning i fotonräknande kiseldetektorer för CT och resultaten tyder på att händelserekonstruktion kan vara möjlig i framtiden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 65
Series
TRITA-SCI-FOU ; 2022:06
Keywords
photon-counting, silicon detector, spectral computed tomography, subpixel resolution, dose efficiency, coincidence tracking, event reconstruction, fotonräknande, kiseldetektor, spektral datortomografi, subpixelupplösning, doseffektivitet, koincidensspårning, händelserekonstruktion
National Category
Medical Instrumentation
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-310335 (URN)978-91-8040-181-4 (ISBN)
Public defence
2022-04-29, FA32, Roslagstullsbacken 21, AlbaNova Universitetscentrum, Stockholm, 09:15
Opponent
Supervisors
Note

QC 220329

Available from: 2022-03-29 Created: 2022-03-29 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Sundberg, ChristelPersson, MatsDanielsson, Mats

Search in DiVA

By author/editor
Sundberg, ChristelPersson, MatsDanielsson, Mats
By organisation
Physics of Medical Imaging
In the same journal
Journal of Medical Imaging
Radiology, Nuclear Medicine and Medical ImagingMedical Imaging

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 149 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf