kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Increasing sustainability of asphalt by using self-healing: a neutron imaging study
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0002-1827-1517
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-8260-2723
Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institut (PSI), 5232 Villigen, Switzerland..ORCID iD: 0000-0003-4054-4726
Empa - Swiss Federal Laboratories for Materials Science and Technology, Dubendorf, Switzerland.ORCID iD: 0000-0002-7011-0542
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

As the asphaltic pavement constitutes a significant part of surface transportation system, even just a slight improvement in the asphalt materials can potentially lead to benefits regarding the cost and environmental impacts of road infrastructure. Fortunately, the healing property that asphalt material possesses has shown a prospect of sustainability enhancement, which has attracted an extensive number of worldwide researches. However, the causes and influence factors have still mostly remained as unknown. In order to be able to count on the self-healing property for extending pavement service life, a better understanding of the mechanisms and conditions that stimulate the self-healing of micro-cracks in asphalt is needed. This study aims to investigate the dynamic progress of micro-crack closure in asphalt mastics. Non-destructive neutron computed tomography was applied to follow the time-series evolution of self-healing phenomenon and corresponding image processing techniques were utilised to conduct the volumetric analysis over a 7-hour scanning time. The damage healing process in the mastic samples with three sand filler content (10%, 20% and 30%) were tracked and analysed. From the volumetric analysis, it was concluded that the healing rate decreased exponentially after a certain time period and no 100% recovery rate was achieved after 7-hour exposure to room temperature. The results indicated that different filler percentages had an evident effect on the healing speed. It was found that mastics with 20% sand had the best healing performance, while it differed for the 10% and 30% groups depending on the initial crack size. Additionally, it also appeared that the initial crack size affected the healing behaviors in the samples. 

Keywords [en]
Self-healing, asphalt materials, neutron tomography, image processing, sustainability
National Category
Infrastructure Engineering Other Materials Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-309619OAI: oai:DiVA.org:kth-309619DiVA, id: diva2:1642872
Note

QC 20220316

Available from: 2022-03-08 Created: 2022-03-08 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Towards a sustainable road infrastructure in an age of digitization: opportunities and challenges
Open this publication in new window or tab >>Towards a sustainable road infrastructure in an age of digitization: opportunities and challenges
2022 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Pavement system plays an indispensable role in the socio-economic and sustainable development of every modern society. Yet, pavement construction and maintenance is also responsible for a significant fraction of the GHG emissions from the whole transport sector. At the same time, the extensive global pavement network entails continual investment in maintenance and rehabilitation activities. Given the evidence from previous studies, pavement maintenance has a great potential in reducing pavement-induced GHG emissions and fuel consumption. To assist the transition towards a future sustainable road infrastructure, this thesis has marked the theoretical basis of sustainable pavement maintenance management. Two approaches are discussed to offer a multi-dimensional view for future sustainability improvement in pavement maintenance practices. With the still-evolving concept of sustainability in road infrastructure, it is necessary to recognize where we are and what we need to do to develop a comprehensive management framework with the opportunities and challenges. Based on a systematic literature review, this project identifies the current stage of sustainable road infrastructure management and guides to sustainability-oriented maintenance optimization for designing top-down strategies. Meanwhile, it is not enough to only optimize the decision-making process; more bottom-up knowledge of pavement materials is required to inform better maintenance design. This thesis has focused on the self-healing property of asphalt material due to the non-negligible sustainability indications it implies. By applying neutron tomography and image processing technique, the microstructural changes during the self-healing process are analyzed with its 7-hour time-series volumetric data. The experiment has shown that different filler content has a great influence on self-healing efficiency in asphalt mastics. The results will give us the possibility to optimize asphalt self-repair, shedding a light on a new generation of sustainable asphalt pavement. The two approaches presented in this thesis offer valuable insights into sustainable road infrastructure optimization from different aspects.

Abstract [sv]

I varje modernt samhälle spelar vägarna en viktig roll för socioekonomisk och hållbar utveckling. Vägnätet, med byggande och underhåll, bidrar också med en betydande del av växthusgasutsläppen från hela transportsektorn. Vägnätet kräver kontinuerliga investeringar på grund av behovet av underhåll . Tidigare studier har visat att det finns en stor potential för minskning av utsläppen av växthusgaser från vägunderhåll. Vägarnas kvalitet spelar också roll för trafikens bränsleförbrukning. 

Fokus för denna avhandling är att underlätta för framtida hållbar väginfrastruktur. När det gäller den teoretiska grunden för hållbar förvaltning av vägar och underhåll av vägbeläggningar är det nödvändigt att förstå vad som är dagens aktuella teknik, och också att veta vad vi behöver utveckla för att få ett heltäckande ledningsramverk för vägunderhåll. Här finns både möjligheter och utmaningar. Baserat på en systematisk litteraturgenomgång identifierar detta projekt det aktuella läget när det gäller praktik för förvaltning av väginfrastruktur. Som ett resultat av detta presenteras olika metoder som tillämpas för en målorienterad underhållsoptimering, som måste göras top-down från den som har övergripande ansvar för vägnätet. Samtidigt räcker det inte att bara optimera beslutsprocessen, det krävs mer bottom-up kunskap i fråga om beläggningsmaterial för att förbättra metoderna för underhåll. Denna avhandling har därför också fokuserat på den självläkande egenskapen hos asfaltmaterial. Här fanns en unik möjlighet att tillämpa neutrontomografi och bildbehandlingsteknik för analyser av de mikrostrukturella förändringarna under självläkningsprocessen i asfaltmaterial, med 7-timmars tidsserievolymetriska data. Experimentet har visat att olika innehåll av fyllmedel i asfaltmastixen  har stor inverkan på självläkandets effektivitet. De två tillvägagångssätten som presenteras i denna avhandling ger värdefulla insikter om hållbar väginfrastrukturoptimering ur olika aspekter. 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2022. p. 60
Series
TRITA-ABE-DLT ; 228
Keywords
Sustainable infrastructure, Pavement Maintenance, Optimization, Neutron tomography, Self-healing, Hållbar infrastruktur, Vägunderhåll, Optimering, Neutronavbildning, Självläkning
National Category
Infrastructure Engineering Other Materials Engineering
Research subject
Civil and Architectural Engineering, Structural Engineering and Bridges
Identifiers
urn:nbn:se:kth:diva-309620 (URN)978-91-8040-171-5 (ISBN)
Presentation
2022-03-30, U1,Brinellvägen 26, KTH Campus, Digital länk: https://kth-se.zoom.us/j/63762718124, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 220309

Available from: 2022-03-09 Created: 2022-03-08 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Liu, ZhuhuanCavalli, Maria ChiaraKringos, Nicole

Search in DiVA

By author/editor
Liu, ZhuhuanCavalli, Maria ChiaraKaester, AndersPoulikakos, LilyKringos, Nicole
By organisation
Structural Engineering and Bridges
Infrastructure EngineeringOther Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 409 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf