kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Architecture for a Multi-Vendor VSC-HVDC Station With Partially Open Control and Protection
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.ORCID iD: 0000-0002-0579-2639
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electric Power and Energy Systems.
Karlsruhe Inst Technol, Inst Elect Energy Syst & High Voltage Technol, D-76131 Karlsruhe, Germany..
Tech Univ Carolo Wilhelmina Braunschweig, Elenia Inst High Voltage Technol & Power Syst, D-38106 Braunschweig, Germany..
Show others and affiliations
2022 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 10, p. 13555-13569Article in journal (Refereed) Published
Abstract [en]

High voltage direct current (HVDC) grids are envisioned for large-scale grid integration of renewable energy sources. Upon realization, components from multiple vendors have to be coordinated and interoperability problems can occur. To address these problems, a multi-vendor HVDC system can benefit from a partially open control and protection system. Unwanted interactions can be investigated and solved more easily in partially open software compared to when applying black-boxed and vendor-specific software. Although a partially open approach offers these advantages, practical aspects, such as the implementation in a real station architecture, have to be addressed carefully. This paper covers this important topic, first by reviewing the required control and protection functions and second by discussing the choice for certain open and closed software parts, their implementation in physical units as well as the required communication and interfaces. The result from this discussion is a first proposal of a station architecture for a multi-vendor HVDC system using partially open control and protection. This architecture will be a helpful starting point to industry and academia working with research and harmonization on this topic as ad-hoc solutions in terms of practical aspects can be avoided.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 10, p. 13555-13569
Keywords [en]
Architecture, converter stations, HVDC transmission, MMC control, open-source software
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-309269DOI: 10.1109/ACCESS.2022.3146782ISI: 000753417800001Scopus ID: 2-s2.0-85124095481OAI: oai:DiVA.org:kth-309269DiVA, id: diva2:1643012
Note

QC 20220308

Available from: 2022-03-08 Created: 2022-03-08 Last updated: 2024-11-19Bibliographically approved
In thesis
1. Impedance Analysis and Stability Assessment of Modular Multilevel Converters
Open this publication in new window or tab >>Impedance Analysis and Stability Assessment of Modular Multilevel Converters
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Owing to their scalability, modular design, and high efficiency, modular multilevel converters (MMCs) are considered the state-of-the-art topology in high voltage dc (HVDC) and flexible ac transmission (FACT) systems. Ensuring converter- and system-level stability is crucial to facilitate the large-scale integration of these converters into future power grids. 

Similar to other power electronics systems, the stability of MMC interfaced dc and ac systems can be assessed via the impedance-based stability criterion, which requires detailed representation or measurement of the MMC terminal impedances. The main objective of this thesis is thus, to model the dc- and ac-side impedances of the MMCs taking into account various control system implementations. To this end, the impact of different control schemes and parameters on the converter impedances are thoroughly investigated, resulting in models that serve as tools for analyzing potential undesirable interactions between converter control dynamics and the system to which the converter is connected.

The thesis also focuses on developing impedance models in situations where parts of the control system are concealed for intellectual property protection. By combining frequency-domain system identification and harmonic linearization, these black-boxed control system components are integrated into the impedance model. This approach enables the analysis of the impact of outer-loop control settings on converter stability.

Finally, the thesis assesses the stability of several case studies in which MMCs are interfaced to dc or ac systems. Consequently, active damping solutions are proposed to mitigate harmonic resonances arising from the interaction of the converter and the dc or ac systems. Theoretical analyses are substantiated through time-domain simulations and laboratory experiments.

Key contributions include the development of impedance models under various control schemes and a method for estimating dc-side impedance in MMC systems with black-boxed control. The findings provide insights into impedance shaping, stability challenges, and effective damping strategies in MMC-based systems.

Abstract [sv]

Tack vare av sin skalbarhet, modulära design och höga verkningsgrad anses modulära multinivå-omvandlare (MMC) vara den främsta topologin för högspänd likströmsöverföring (HVDC) och flexibel växelströmstransmission (FACT). Att säkerställa stabilitet på omvandlar- och systemnivå är avgörande för att möjliggöra storskalig integration av dessa omvandlare i framtida elnät.

I likhet med andra kraftelektroniksystem kan stabiliteten hos MMC-anslutna likströms- och växelströmssystem bedömas genom det impedansbaserade stabilitetskriteriet, vilket kräver detaljerad modellering eller mätning av omvandlarnas-terminalimpedanserna. Huvudsyftet med denna avhandling är således att modellera likströms- och växelströmsimpedansen för MMC:erna vid olika implementeringar av styrsystemen. Därför undersöks inverkan av olika styrprinciper och parametrar på omvandlarens impedans, vilket resulterar i modeller som fungerar som verktyg för att analysera potentiella oönskade interaktioner mellan omvandlarens styrdynamik och det system som omvandlaren är ansluten till.

Avhandlingen fokuserar också på att utveckla impedansmodeller för situationer där delar av styrsystemet är dolda, för att skydda immateriella rättigheter. Genom att kombinera systemidentifiering i frekvensplanet och harmonisk linjärisering, integreras dessa dolda styrsystemkomponenter i impedansmodellen. Detta tillvägagångssätt gör det möjligt att analysera effekten av parameterval för yttre, ej dolda, reglerslingor på omvandlarens stabilitet.

Slutligen bedömer avhandlingen stabiliteten i flera fall där MMC:er ansluts till likströms- eller växelströmssystem. Följaktligen föreslås aktiva dämpningslösningar för att mildra övertonsresonanser som uppstår genom växelverkan mellan omvandlaren och likströms- eller växelströmssystemen. Teoretiska analyser underbyggs genom simuleringar i tidplanet och laboratorieexperiment.

Viktiga bidrag utgörs av utvecklingen av impedansmodeller under olika styrprinciper och en metod för att uppskatta likströmssidans impedans i MMC-system med black-box-styrning. Resultaten ger insikter i impedansstyrning, stabilitetsfrågor och effektiva dämpningsstrategier i MMC-baserade system.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. ix, 65
Series
TRITA-EECS-AVL ; 2024:88
Keywords
Converter control, converter-driven stability, frequency-domain analysis, harmonic linearization, impedance/admittance modeling, modular multilevel converter (MMC), partially black-boxed control, Omvandlarstyrning, omvandlardriven stabilitet, frekvensdomänanalys, harmonisk linjärisering, impedans/admittansmodellering, modulär flernivåomvandlare (MMC), styrning med delvis svart låda.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-356602 (URN)978-91-8106-112-3 (ISBN)
Public defence
2024-12-16, Sal H1, Teknikringen 33, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20241120

Available from: 2024-11-20 Created: 2024-11-19 Last updated: 2024-12-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Jahn, IlkaNahalparvari, MehrdadNorrga, Staffan

Search in DiVA

By author/editor
Jahn, IlkaNahalparvari, MehrdadNorrga, Staffan
By organisation
Electric Power and Energy Systems
In the same journal
IEEE Access
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 314 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf