kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Breaking the quadratic barrier for matroid intersection
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS.
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS.ORCID iD: 0000-0001-8611-6896
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS.ORCID iD: 0000-0002-3722-4679
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Theoretical Computer Science, TCS. University of Copenhagen, Denmark .ORCID iD: 0000-0003-4468-2675
2021 (English)In: Proceedings of the Annual ACM Symposium on Theory of Computing, Association for Computing Machinery (ACM) , 2021, p. 421-432Conference paper, Published paper (Refereed)
Abstract [en]

The matroid intersection problem is a fundamental problem that has been extensively studied for half a century. In the classic version of this problem, we are given two matroids M1 = (V, I1) and M2 = (V, I2) on a comment ground set V of n elements, and then we have to find the largest common independent set S e I1 I2 by making independence oracle queries of the form "Is S e I1?"or "Is S e I2?"for S ? V. The goal is to minimize the number of queries. Beating the existing O(n2) bound, known as the quadratic barrier, is an open problem that captures the limits of techniques from two lines of work. The first one is the classic Cunningham's algorithm [SICOMP 1986], whose O(n2)-query implementations were shown by CLS+ [FOCS 2019] and Nguyen [2019] (more generally, these algorithms take O(nr) queries where r denotes the rank which can be as big as n). The other one is the general cutting plane method of Lee, Sidford, and Wong [FOCS 2015]. The only progress towards breaking the quadratic barrier requires either approximation algorithms or a more powerful rank oracle query [CLS+ FOCS 2019]. No exact algorithm with o(n2) independence queries was known. In this work, we break the quadratic barrier with a randomized algorithm guaranteeing O(n9/5) independence queries with high probability, and a deterministic algorithm guaranteeing O(n11/6) independence queries. Our key insight is simple and fast algorithms to solve a graph reachability problem that arose in the standard augmenting path framework [Edmonds 1968]. Combining this with previous exact and approximation algorithms leads to our results. 

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM) , 2021. p. 421-432
Series
Proceedings of the annual ACM Symposium on Theory of Computing, ISSN 0737-8017
Keywords [en]
Combinatorial Optimization, Matroid Intersection, Matroids, Approximation theory, Combinatorial mathematics, Computation theory, Graph algorithms, Optimization, Augmenting path, Cutting plane methods, Deterministic algorithms, Exact algorithms, High probability, Randomized Algorithms, Reachability problem, Approximation algorithms
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-309939DOI: 10.1145/3406325.3451092ISI: 000810492500045Scopus ID: 2-s2.0-85108144921OAI: oai:DiVA.org:kth-309939DiVA, id: diva2:1645890
Conference
53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, Virtual/Online, 21-25 June 2021
Note

Part of proceedings: ISBN 978-1-4503-8053-9

QC 20220321

Available from: 2022-03-21 Created: 2022-03-21 Last updated: 2024-11-03Bibliographically approved
In thesis
1. Matchings, Maxflows, Matroids: The Power of Augmenting Paths and Computational Models
Open this publication in new window or tab >>Matchings, Maxflows, Matroids: The Power of Augmenting Paths and Computational Models
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Matchings, Maximum Flow, and Matroid Intersections are fundamental combinatorial optimization problems that have been studied extensively since the inception of computer science. A series of breakthroughs in graph algorithms and continuous optimization in the past decade has led to exciting almost-optimal algorithms for maximum flow and bipartite matching. However, we are still far from fully understanding these problems. First, it remains open how to solve these problems in modern models of computation, such as parallel, dynamic, online, and communication models. Second, as algorithms become more sophisticated in pursuit of efficiency, they often sacrifice simplicity, potentially obscuring valuable combinatorial insights. This raises a fundamental question: can we develop efficient algorithms that maintain the combinatorial nature of these problems, rather than relying on linear algebra and continuous methods?

This thesis returns to the classic augmenting paths framework---the original approach to matchings, maximum flow, and matroid intersection---with the goal of developing new efficient combinatorial algorithms. Our key contributions include the first combinatorial algorithm achieving almost-linear time for maximum flow on dense graphs, and the first subquadratic independence-query algorithm for matroid intersection. For modern computational models, our contributions include an improved online rounding scheme for fractional matching (leading to an optimal online edge coloring algorithm), a resolution of the query and communication complexity for bipartite matching, and the first sublinear-round parallel algorithms for matroid intersection.

Abstract [sv]

Matchningar, Maximala Flöden och Matroidsnitt är grundläggande kombinatoriska optimeringsproblem som har studerats ingående sedan datorvetenskapens början.  En serie genombrott inom grafalgoritmik och kontinuerlig optimering under det senaste årentiondet har lett till imponerande nästan optimala algoritmer för maximalt flöde och bipartit matchning. Vi är dock fortfarande långt ifrån att fullt förstå dessa problem. För det första återstår frågan om hur man kan lösa dessa problem i andra beräkningsmodeller, såsom parallell-, dynamisk-, online- och kommunikationsmodeller. För det andra, när algoritmer blir allt mer sofistikerade i deras effektivitetsträvan, offrar de ofta enkelhet, vilket potentiellt kan dölja värdefulla kombinatoriska insikter. Detta motiverar en grundläggande fråga: kan vi utveckla effektiva algoritmer som bevarar den kombinatoriska karaktären hos dessa problem, istället för att förlita sig på linjär algebra och kontinuerliga metoder?

Denna avhandling återgår till de klassiska augmenting-pathsalgoritmerna---det ursprungliga angreppssättet för matchningar, maximalt flöde och matroid-snitt---med målet att utveckla nya effektiva kombinatoriska algoritmer. Våra viktigaste bidrag inkluderar den första kombinatoriska algoritmen som uppnår nästan linjär tid för maximalt flöde på täta grafer, och den första subkvadratiska independence-query-algoritmen för matroidsnitt. För moderna beräkningsmodeller inkluderar våra bidrag förbättrade  onlineavrundningsalgorithmer för fraktionell matchning (vilket leder till en optimal onlinealgoritm för kantfärgning), en lösning av query- och kommunikationskomplexiteten för bipartit matchning, och de första sublinjära parallella algoritmerna för matroidsnitt.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. x, 67
Series
TRITA-EECS-AVL ; 2024:84
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-355377 (URN)978-91-8106-091-1 (ISBN)
Public defence
2024-11-27, F3, Lindstedtsvägen 26 & 28, KTH, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20241105

Available from: 2024-11-05 Created: 2024-11-03 Last updated: 2024-11-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Blikstad, Joakimvan den Brand, JanMukhopadhyay, SagnikNa Nongkai, Danupon

Search in DiVA

By author/editor
Blikstad, Joakimvan den Brand, JanMukhopadhyay, SagnikNa Nongkai, Danupon
By organisation
Theoretical Computer Science, TCS
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf