kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Functional Analysis of H+-Pumping Membrane-Bound Pyrophosphatase, ADP-Glucose Synthase, and Pyruvate Phosphate Dikinase as Pyrophosphate Sources in Clostridium thermocellum
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.ORCID iD: 0000-0001-7590-2752
Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA.;Oak Ridge Natl Lab, Ctr Bioenergy Innovat, Oak Ridge, TN USA..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.ORCID iD: 0000-0003-1347-7978
Oak Ridge Natl Lab, Ctr Bioenergy Innovat, Oak Ridge, TN USA.;Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA..
Show others and affiliations
2022 (English)In: Applied and Environmental Microbiology, ISSN 0099-2240, E-ISSN 1098-5336, Vol. 88, no 4, article id e01857-21Article in journal (Refereed) Published
Abstract [en]

The atypical glycolysis of Clostridium thermocellum is characterized by the use of pyrophosphate (PPi) as a phosphoryl donor for phosphofructokinase (Pfk) and pyruvate phosphate dikinase (Ppdk) reactions. Previously, biosynthetic PPi was calculated to be stoichiometrically insufficient to drive glycolysis. This study investigates the role of a H+-pumping membrane-bound pyrophosphatase, glycogen cycling, a predicted Ppdk-malate shunt cycle, and acetate cycling in generating PPi. Knockout studies and enzyme assays confirmed that clo1313_0823 encodes a membrane-bound pyrophosphatase. Additionally, clo1313_0717-0718 was confirmed to encode ADP-glucose synthase by knockouts, glycogen measurements in C. thermocellum, and heterologous expression in Escherichia coli. Unexpectedly, individually targeted gene deletions of the four putative PPi sources did not have a significant phenotypic effect. Although combinatorial deletion of all four putative PPi sources reduced the growth rate by 22% (0.30 +/- 0.01 h(-1)) and the biomass yield by 38% (0.18 +/- 0.00 g(biomass) g(substrate)-1), this change was much smaller than what would be expected for stoichiometrically essential PPi-supplying mechanisms. Growth-arrested cells of the quadruple knockout readily fermented cellobiose, indicating that the unknown PPi-supplying mechanisms are independent of biosynthesis. An alternative hypothesis that ATP-dependent Pfk activity circumvents a need for PPi altogether was falsified by enzyme assays, heterologous expression of candidate genes, and whole-genome sequencing. As a secondary outcome, enzymatic assays confirmed functional annotation of clo1313_1832 as ATP- and GTP-dependent fructokinase. These results indicate that the four investigated PPi sources individually and combined play no significant PPi-supplying role, and the true source(s) of PPi, or alternative phosphorylating mechanisms, that drive(s) glycolysis in C. thermocellum remain(s) elusive. IMPORTANCE Increased understanding of the central metabolism of C. thermocellum is important from a fundamental as well as from a sustainability and industrial perspective. In addition to showing that H+-pumping membrane-bound PPase, glycogen cycling, a Ppdk-malate shunt cycle, and acetate cycling are not significant sources of PPi supply, this study adds functional annotation of four genes and availability of an updated PP, stoichiometry from biosynthesis to the scientific domain. Together, this aids future metabolic engineering attempts aimed to improve C. thermocellum as a cell factory for sustainable and efficient production of ethanol from lignocellulosic material through consolidated bioprocessing with minimal pretreatment. Getting closer to elucidating the elusive source of PPi or alternative phosphorylating mechanisms, for the atypical glycolysis is itself of fundamental importance. Additionally, the findings of this study directly contribute to investigations into trade-offs between thermodynamic driving force versus energy yield of PPi and ATP-dependent glycolysis.

Place, publisher, year, edition, pages
American Society for Microbiology , 2022. Vol. 88, no 4, article id e01857-21
Keywords [en]
pyrophosphate, PPi, atypical glycolysis, H+-pumping membrane-bound pyrophosphatase, glycogen cycling, Ppdk, acetate cycling, functional annotation, Clostridium thermocellum, Acetivibrio thermocellus
National Category
Biochemistry Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-310241DOI: 10.1128/aem.01857-21ISI: 000759805900004PubMedID: 34936842Scopus ID: 2-s2.0-85125015437OAI: oai:DiVA.org:kth-310241DiVA, id: diva2:1647240
Note

QC 20220325

Available from: 2022-03-25 Created: 2022-03-25 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Insights into the metabolism of Clostridium thermocellum for cellulosic ethanol production
Open this publication in new window or tab >>Insights into the metabolism of Clostridium thermocellum for cellulosic ethanol production
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The societal goal of reaching net-zero CO2 emissions requires development of integrated biorefineries to produce biomass-derived fuels and chemicals. For sustainable second-generation bioethanol production, consolidated bioprocessing with the thermophile Clostridium thermocellum is regarded as a promising concept in view of the microorganism’s native ability to efficiently degrade plant cell wall material. However, for industrial implementation, improvements in ethanol titer and yield are needed. The aim of this thesis was to increase knowledge on the metabolism of C. thermocellum and thereby guide future metabolic engineering strategies to maximize the ethanol yield and titer.

Yield improvements and fundamental studies into the metabolism of C. thermocellum would benefit from higher utilization of hexose monomers as well as minimized byproduct formation. To investigate underlying mechanisms for growth on glucose and fructose, laboratory evolution in chemostats together with genome sequence-based reverse engineering was applied. This successfully revealed two underlying mutations with (regulatory) roles in metabolism or transport of the monosaccharides. Together, these mutations enable reproducible and constitutive growth and are relevant for follow-up studies into transport and upper glycolysis. Separately, the mechanism behind the surprising byproduct formation of secreted amino acids was investigated by knock-out studies in NADPH-supplying and -consuming pathways. Physiological characterization in cellobiose- or ammonium-limited chemostats of mutant strains, with deletions in the NADPH-forming malate shunt or in the putatively ferredoxin-dependent ammonium assimilation, demonstrated a central role of NADPH in driving amino acid secretion. The findings indicated that electron availability will be crucial for further yield improvements in the NADH-dependent ethanol pathway.

Fundamental mechanisms that might contribute to improved ethanol titer were addressed by studying thermodynamic and biophysical limitations. The pyrophosphate (PPi)-dependent glycolysis of C. thermocellum has been hypothesized to increase the overall ATP yield at the expense of the overall driving force. Knock-out studies combined with functional annotation of potential PPi-sources questioned this trade-off and increased knowledge of the PPi metabolism. The chaotropic effect (biophysical toxicity) of ethanol is commonly counteracted by lowering the cultivation temperature. Here, physiological characterization at varying ethanol titers demonstrated improved growth and fermentation at lower temperature. Comparisons to a non-ethanol producing mutant indicated both thermodynamic and biophysical limitations specifically in the ethanol pathway.

Overall, these findings suggest that improvements in ethanol yield and titer would benefit from a simplified glycolysis that is engineered for a high driving force. While this work is beneficial for second-generation ethanol production, these findings can also be broadly applicable in the research and development of C. thermocellum as a cell factory for sustainable production of other fuels and chemicals. 

Abstract [sv]

Samhällsmålet att nå nettonoll CO2 utsläpp kräver att integrerade bioraffinaderier utvecklas för att producera bränslen och kemikalier baserade på biomassa. För hållbar andra-generationens bioetanol-produktion betraktas konsoliderad bioprocessering med termofilen Clostridium thermocellum som ett lovande koncept, utifrån dess naturliga förmåga att effektivt bryta ner växtcellväggar. Emellertid krävs ökad titer och utbyte av etanol för att nå industriell implementering. Målet med denna avhandling var att öka kunskapen om C. thermocellums metabolism och därmed vägleda framtida strategier för att maximera utbytet och titern av etanol genom metabolic engineering.

Förbättringar i utbytet samt fundamentala studier på metabolism hos C. thermocellum skulle gynnas av ett större utnyttjande av C6-mono-sackarider samt minskad produktion av biprodukter. Underliggande mekanismer för tillväxt på glukos och fruktos undersöktes med laboratory evolution i kemostater samt genomsekvensbaserad reverse engineering. I denna studie avslöjades två underliggande mutationer med (regulatoriska) roller i metabolismen eller transporten av dessa monosackarider. Tillsammans möjliggjorde dessa mutationer reproducerbar och konstitutiv tillväxt. Mutationerna är även relevanta för uppföljningsstudier av sockertransport och den övre glykolysen. Därutöver studerades den oväntade biproduktgruppen, aminosyror, genom knockoutstudier på NADPH-producerande och -konsumerande reaktionsvägar. Stammar med knockouts i den NADPH-producerande malatshunten eller i den potentiellt ferredoxin-kopplade ammoniumassimileringen karaktäriserades fysio-logiskt i cellobios- och ammoniumbegränsande kemostater. Detta visade att NADPH har en central roll i att driva aminosyrautsöndring. Dessa upptäckter indikerade att elektrontillgänglighet är kritiskt för att öka utbytet i den NADH-beroende etanolproduktionen. 

Fundamentala mekanismer som skulle kunna bidra till förbättrad titer av etanol studerades från termodynamiska och biofysiska perspektiv. En rådande hypotes har varit att den pyrofosfat (PPi)-beroende glykolysen hos C. thermocellum ökar ATP-utbytet på bekostnad av den totala termodynamiska drivkraften. Knockoutstudier kombinerat med funktionell annotering av potentiella PPi-källor ifrågasatte denna hypotes och ökade förståelsen av PPi metabolismen. Den kaotropiska effekten (biofysisk toxicitet) av etanol dämpas ofta i industriella processer genom att sänka odlingstemperaturen. Här demonstrerade fysiologisk karaktärisering vid olika etanoltiter att tillväxt och fermentering förbättras vid lägre temp-eraturer. En jämförelse mellan en modifierad icke-etanolproducerande stam och vildtypen indikerade att etanolproduktionen är begränsad av både termodynamiska och biofysiska faktorer. 

I helhet antyder dessa forskningsresultat att förbättringar i utbytet och titern av etanol skulle gynnas av en förenklad glykolys, konstruerad för att ge en hög termodynamisk drivkraft. Fastän denna avhandling fokuserar på andra-generationens etanolproduktion, kan dessa forskningsrön även appliceras mer brett i forskning och utveckling av C. thermocellum som en cellfabrik för hållbar produktion av andra bränslen och kemikalier. 

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2022. p. 87
Series
TRITA-CBH-FOU ; 2022:51
Keywords
Clostridium thermocellum, ethanol, glucose, fructose, amino acids, pyrophosphate, chaotropicity, thermodynamic driving force, laboratory evolution, chemostats, metabolic engineering
National Category
Other Industrial Biotechnology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-319878 (URN)978-91-8040-366-5 (ISBN)
Public defence
2022-11-08, Kollegiesalen, Brinellvägen 8, via Zoom: https://kth-se.zoom.us/j/63457293693, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2022-10-11

Available from: 2022-10-11 Created: 2022-10-10 Last updated: 2022-11-04Bibliographically approved
2. Analysis and engineering of central metabolism in Clostridium thermocellum
Open this publication in new window or tab >>Analysis and engineering of central metabolism in Clostridium thermocellum
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

To mitigate climate change, greenhouse gas emissions must be reduced to net-zero in 2050 requiring a drastic transition in today´s energy sector. To achieve this goal, the use of biofuels produced from lignocellulosic feedstocks, including agricultural and forestry residues, is expected to play an important role. The native ability of the anaerobic thermophile Clostridium thermocellum to efficiently degrade lignocellulose makes this microorganism a promising candidate for consolidated bioprocessing of lignocellulosic feedstocks into the biofuel ethanol. However, improvements in ethanol yield, titre, and tolerance are required for industrial implementation. The aim of this thesis was to increase understanding of the central metabolism of C. thermocellum and thereby aid future metabolic engineering and process optimization efforts focused on improving ethanol production from lignocellulosic material. 

The atypical glycolysis of C. thermocellum uses pyrophosphate (PPi) instead of ATP as phosphoryl donor. This alteration is hypothesized to increase energetic efficiency but simultaneously decrease thermodynamic driving force resulting in lower achievable ethanol titres. As such, improved understanding of the PPi metabolism has both fundamental and applied importance. Knockout studies combined with physiological characterization of four predicted metabolic PPi sources provided valuable insights into the PPi metabolism and demonstrated that the energetic benefits of PPi usage are likely limited. Furthermore, biochemical characterization of the ATP-Pfk from C. thermocellum and other bacteria demonstrated that PPi might be a key allosteric regulator in bacteria with a PPi-dependent glycolysis. 

The low thermodynamic driving force of the ethanol formation pathway combined with a flexible redox network are key factors that impact ethanol titre, yield, and tolerance in C. thermocellum. Apart from dominant thermodynamic limitations, physiological characterization of wild-type and a non-ethanol producing mutant at various exogenous ethanol concentrations and temperatures demonstrated that biophysical limitations also impact ethanol tolerance. Lowering the cultivation temperature decreased chaotropic effects of ethanol and improved ethanol tolerance. 

By-product formation and incomplete substrate utilization decrease obtained ethanol yields. To minimize formation of one specific class of by-products, the mechanism behind amino acid secretion in C. thermocellum was investigated. Cellobiose- or ammonium-limited chemostats of wild-type and knockout strains of NADPH-supplying and NADPH-consuming pathways identified catabolic oversupply of NADPH as the main driver behind amino acid secretion. The malate shunt and the ammonium-regulated shift between nitrogen assimilation pathways with differing cofactor specificities were shown to play key roles in NADPH metabolism and amino acid secretion. 

To improve substrate utilization, laboratory evolution combined with reverse metabolic engineering was used as a tool to provide insights into increased utilization of glucose and fructose. Reproducible and constitutive growth on these hexose sugars was achieved for evolved mutant strains. Additionally, two mutations were identified that are involved in (regulation of) transport or metabolism of these hexose sugars.

Together these findings provide valuable insights into the central metabolism of C. thermocellum and aid future optimizations of this organism for consolidated bioprocessing of lignocellulosic feedstocks into fuels and chemicals. 

Abstract [sv]

För att mildra klimatförändringarna måste utsläppen av växthusgaser minskas till nettonoll år 2050 vilket kräver en drastisk förändring i dagens energisektor. För att uppnå detta mål förväntas användningen av biobränslen producerade från lignocellulosabaserade råmaterial, såsom jordbruks- och skogsrester, spela en viktig roll. Den naturliga förmågan att effektivt bryta ned lignocellulosa hittas hos den anaerobiska termofilen Clostridium thermocellum och gör denna mikroorganism till en lovande kandidat för konsoliderad bioprocessering av lignocellulosabaserade råmaterial till biobränslet etanol. För industriell implementering krävs dock förbättringar av etanolutbyte, -titer och -tolerans. Syftet med denna avhandling var att öka förståelsen av C. thermocellums centrala metabolism och därigenom vägleda framtida insatser inom metabol ingenjörskonst och processoptimering för att förbättra etanolproduktionen från lignocellulosabaserade råvaror.

Den atypiska glykolysen hos C. thermocellum använder pyrofosfat (PPi) i stället för ATP som fosforyldonator. Denna skillnad har hypotiserats öka energieffektiviteten men samtidigt minska den termodynamiska drivkraften, och resultera i en lägre uppnåbar etanoltiter. Därför är en förbättrad förståelse av PPi-metabolismen viktig ur fundamentala och applicerbara perspektiv. Knockoutstudier tillsammans med fysiologisk karaktärisering av fyra predikterade metaboliska PPi-källor gav värdefulla insikter i PPi-metabolismen och visade att energifördelarna med användningen av PPi sannolikt är begränsade. Vidare visade biokemisk karaktärisering av ATP-Pfk från C. thermocellum och andra bakterier att PPi kan vara en viktig allosterisk regulator för bakterier med en PPi-beroende glykolys.

Den låga termodynamiska drivkraften hos etanolproduktionsvägen kombinerat med ett flexibelt redoxnätverk är nyckelfaktorer som påverkar etanoltitern, -utbytet och -toleransen hos C. thermocellum. Förutom övervägande termodynamiska begränsningar visade fysiologisk karaktärisering av vildtypen och en modifierad icke-etanolproducerande stam, vid olika extracellulära etanolkoncentrationer och temperaturer, att även biokemiska begränsningar påverkar etanoltoleransen. Att sänka odlingstemperaturen reducerade de kaotropiska effekterna av etanol och förbättrade etanoltoleransen.

Produktion av biprodukter och ofullständigt substratutnyttjande minskar erhållna etanolutbyten. För att minimera produktionen av en specifik klass av biprodukter undersöktes mekanismen bakom aminosyrasekretion hos C. thermocellum. Cellobios- eller ammoniumbegränsade kemostater av vildtypen och knockout-stammar av NADPH-producerande och -konsumerande reaktionsvägar identifierade ett katabolisk överskott av NADPH som den främsta drivkraften bakom aminosyrasekretion. Malatshunten samt det ammoniumreglerade skiftet mellan olika assimileringvägar av kväve med specificitet för olika kofaktorer visade sig spela en nyckelroll i NADPH-metabolismen och aminosyrasekretionen. 

För att öka substratutnyttjandet användes laboratorieevolution kombinerat med reverse metabolic engineering som verktyg för att ge insikter i hur utnyttjande av glukos och fruktos kan förbättras. Laboratorieevolutionen resulterade i stammar med reproducerbar och konstitutiv tillväxt på dessa hexoser. Sedan identifierades två mutationer involverade i (reglering av) transport eller metabolism av dessa hexoser.

Tillsammans ger dessa forskningsrön värdefulla insikter i C. thermocellums centrala metabolism och underlättar framtida optimeringar av denna organism för konsoliderad bioprocessering av lignocellulosabaserat råmaterial till bränslen och kemikalier.

Place, publisher, year, edition, pages
Stockholm: Kungliga tekniska högskolan, 2023. p. 105
Series
TRITA-CBH-FOU ; 2023:16
Keywords
Clostridium thermocellum, biofuels, ethanol, atypical glycolysis, pyrophosphate, phosphofructokinase, thermodynamic driving force, redox cofactor balancing, amino acid secretion, chaotropicity, hexose utilization, laboratory evolution, metabolic engineering
National Category
Industrial Biotechnology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-326160 (URN)978-91-8040-543-0 (ISBN)
Public defence
2023-06-02, Lärosal 22, House 4 Albano campus, Albanovägen 12, via Zoom: https://kth-se.zoom.us/j/61717219797, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council Formas, 2017-00973Novo Nordisk Foundation, NNF20OC0064164
Note

QC 2023-04-25

Available from: 2023-04-25 Created: 2023-04-25 Last updated: 2023-05-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Kuil, TeunYayo, JohannesRavagnan, Giuliavan Maris, Antonius J. A.

Search in DiVA

By author/editor
Kuil, TeunYayo, JohannesRavagnan, GiuliaMaranas, Costas D.Olson, Daniel G.van Maris, Antonius J. A.
By organisation
Industrial Biotechnology
In the same journal
Applied and Environmental Microbiology
BiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 111 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf