kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detecting GNSS misbehaviour with high-precision clocks
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Software and Computer systems, SCS.ORCID iD: 0000-0001-8919-0098
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Software and Computer systems, SCS.ORCID iD: 0000-0002-3267-5374
2021 (English)In: Proceedings WiSec 2021 - Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Association for Computing Machinery (ACM) , 2021, p. 389-391Conference paper, Published paper (Refereed)
Abstract [en]

To mitigate spoofing attacks targeting global navigation satellite systems (GNSS) receivers, one promising method is to rely on alternative time sources, such as network-based synchronization, in order to detect clock offset discrepancies caused by GNSS attacks. However, in case of no network connectivity, such validation references would not be available. A viable option is to rely on a local time reference; in particular, precision hardware clock ensembles of chip-scale thermally stable oscillators with extended holdover capabilities. We present a preliminary design and results towards a custom device capable of providing a stable reference, with smaller footprint and cost compared to traditional precision clocks. The system is fully compatible with existing receiver architecture, making this solution feasible for most industrial scenarios. Further integration with network-based synchronization can provide a complete time assurance system, with high short- and long-term stability. 

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM) , 2021. p. 389-391
Keywords [en]
Cellular radio systems, Clocks, Mobile telecommunication systems, Privacy by design, Wireless networks, Fully compatible, Global Navigation Satellite Systems, Industrial scenarios, Long term stability, Network connectivity, Preliminary design, Receiver architecture, Spoofing attacks, Global positioning system
National Category
Signal Processing Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-310386DOI: 10.1145/3448300.3468254Scopus ID: 2-s2.0-85110070732OAI: oai:DiVA.org:kth-310386DiVA, id: diva2:1649292
Conference
WiSec '21: 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Abu Dhabi, United Arab Emirates, 28 June - 2 July, 2021
Note

Part of proceedings ISBN 9781450383493

QC 20220404

Available from: 2022-04-04 Created: 2022-04-04 Last updated: 2025-03-17Bibliographically approved
In thesis
1. Data verification for GNSS systems and protection of GNSS services
Open this publication in new window or tab >>Data verification for GNSS systems and protection of GNSS services
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

 Global Navigation Satellite Systems (GNSS) provide ubiquitous precise localization and synchronization for a wide gamut of applications, spanning from location-based service to core industrial functionalities in communications and large infrastructure. Civilian use of GNSS relies on publicly available signals and infrastructure designed to operate at a high level of interoperability. Nevertheless, such systems proved to be vulnerable to voluntary and involuntary interference aiming to deny, modify, and falsify the GNSS-provided solution. This poses a significant threat to the robustness of satellite-based timing and localization. A decreasing entry threshold from the knowledge and tools accessibility perspective makes mounting such attacks feasible and effective even against low-value targets. In this work, this issue is targeted, with a practical approach, from three directions, by cross-checking the navigation solution with alternative providers of time, by localizing the interference source and characterizing it, and by relying on specific receiver dynamics to eliminate falsified signals. We discuss protection mechanisms targeting the consumer market based on available infrastructure or on sensing supported by sensors embedded in the GNSS-enabled platform itself. These efforts collectively aim to improve the robustness of consumer GNSS solutions, without modifying the GNSS receiver or the signal structure, to provide secure and reliable navigation and timing in an increasingly adversarial environment.

Abstract [sv]

Globala system för satellitnavigering (eng. global navigation satellite systems, GNSS) tillhandahåller allestädes närvarande precis platsbestämning och synkronisering för ett brett spann av tillämpningar, från platsbaserade tjänster till industriella kärnfunktioner i kommunikation och stora infrastrukturer. Civil användning av GNSS förlitar sig på allmänt tillgängliga signaler och infrastruktur som är designad att användas på en hög nivå av interoperabilitet. Dessa system har visat sig sårbara för störningar som söker att neka, modifiera och falsifiera GNSS-lösningar. Detta utgör ett allvarligt hot mot tillförlitligheten av satellitbaserad tids- och platsbestämning. En sänkning av tröskeln för tillgängligheten av kunskap och verktyg gör det möjligt och effektivt att inleda sådana attacker, även mot lågvärdesmål. I detta verk angrips problemet praktiskt via tre tillvägagångssätt: genom dubbelkontroll av navigationslösningen med alternativa internettidsleverantörer, genom lokalisering av störningskällan och karaktärisera den, och genom att förlita sig på specifik mottagardynamik för att eliminera falsifierade signaler. Vi diskuterar skyddsmekanismer ämnade för konsumentmarknaden baserat på tillgänglig infrastruktur eller m.h.a. mätningar från inbyggda sensorer i GNSS-plattformen i sig. Dessa ansträngningar söker att gemensamt förbättra tillförlitligheten hos konsument GNSS-lösningar, utan att modifiera GNSS-mottagaren eller signalstrukturen, för att erbjuda säker ochpålitlig navigation och tid i enalltmer fientlig miljö

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. p. xxvi, 62
Series
TRITA-EECS-AVL ; 2025:36
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-361272 (URN)978-91-8106-231-1 (ISBN)
Public defence
2025-04-15, https://kth-se.zoom.us/j/62121217840, Sal C, Kistagången 16, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20250317

Available from: 2025-03-17 Created: 2025-03-17 Last updated: 2025-03-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Spanghero, MarcoPapadimitratos, Panagiotis

Search in DiVA

By author/editor
Spanghero, MarcoPapadimitratos, Panagiotis
By organisation
Software and Computer systems, SCS
Signal ProcessingCommunication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf