The role of streamwise length scales (lambda x) in turbulent skin friction generation is investigated using a direct numerical simulation data set of an incompressible zero pressure gradient turbulent boundary layer and the spectral analysis based on the FukagataL73 (2002)]. The total skin friction generation associated with motions scaled with local boundary layer thickness delta of lambda x 3 delta and lambda x 3 delta) contribute to a significant portion of turbulent skin friction. However, it is found that the large-scale ejection and sweep events with streamwise length scales at lambda x 3 delta are equally important. The turbulent skin friction reduction associated with the modification of largeand small-scale quadrant events is studied, using well-resolved simulation data sets of a large-eddy break-up (LEBU) device in a turbulent boundary layer. The results reveal that LEBUs modify both the large- and small-scale ejection and sweep events, yielding a substantial turbulent skin friction reduction.
QC 20220407