kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spider silk nanofibrillar membrane-based models of alveolar-capillary tissue
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Technology. (Silk group)ORCID iD: 0000-0003-1051-9909
(English)Manuscript (preprint) (Other academic)
Abstract [en]

An increasing number of respiratory-related diseases, such as chronic bronchitis, chronic obstructive pulmonary disease, lung fibrosis, pneumonia, and those caused by MERS- and SARS-CoV viruses, necessitate in vitro tissue models that mimic the pulmonary alveolus in detail.Current emulations of the respiratory membrane based on porous synthetic sheets fail to recapitulate the complexity and fibrillarity of the native epithelial basement membrane, whereas biopolymers have little been investigated or membranes made thereof are too thick. Herein, we generated alveolar-capillary tissue models by seeding alveolar type II cells and endothelial cells on the respective apical and basal sides of nanofibrillar membranes made of recombinant spider silk. These models quickly established a barrier function, and after two weeks of culture at air-liquid interface, the epithelial cells formed typical tissue features, such as essential junctional complexes and lamellar bodies. Scanning electron microscopy revealed the presence of surfactants produced and secreted by type II cells, and the differentiation of type II to type I lung epithelial cells. We integrated the double-seeded silk membranes into a microfluidic device to expose the endothelium to in vivo-like shear stresses. The herein developed models are suitable for the in vitro study of e.g. pharmacokinetics or cellular response to inhaled toxicants or other pathogens.

Keywords [en]
alveolar-capillary tissue, lung-on-a-chip, respiratory membrane, recombinant spider silk, tissue engineering
National Category
Biomaterials Science
Identifiers
URN: urn:nbn:se:kth:diva-310901OAI: oai:DiVA.org:kth-310901DiVA, id: diva2:1651098
Note

QC 20220412

Available from: 2022-04-11 Created: 2022-04-11 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Recombinant spider silk for biomedical applications - from functionalizing surfaces of synthetic materials to in vitro modelling of tissues
Open this publication in new window or tab >>Recombinant spider silk for biomedical applications - from functionalizing surfaces of synthetic materials to in vitro modelling of tissues
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Spider silk is a natural protein-based material known for its medicinal use and remarkable mechanical properties. Structures made thereof are both strong and elastic and have been shown to be favorable matrices for tissue engineering. As natural spider silk is difficult to obtain, recombinant technology is instead used to produce partial silk proteins. This thesis investigates the use of one such partial spider silk protein functionalized with a cell adhesion motif from fibronectin, FN-4RepCT, to coat the surface of synthetic polymers, as well as self-assemble into nanofibrillar membranes for modelling of tissues in vitro.

In Paper I, the silk protein was shown to self-assemble into coatings with simultaneous entrapment of cells (co-seeding) to functionalize polymeric surfaces. The results showed that the co-seeding approach facilitated the adherence and sustained the viability of cells on surfaces of materials widely used for the manufacture of cardiovascular grafts.

In Paper II, a protocol was developed to enable the formation of nanofibrillar coatings on the surface of membranes intended for guided bone regeneration. This was done by reducing the surface tension of the membranes, allowing for the self-assembly of silk proteins to take place. The silk coating facilitated the adherence, promoted the growth, and mediated the generation of a cell monolayer of tissue representative cells seeded on either side of the membrane.

In Paper III, the self-assembly of the silk protein at the air-liquid interface was shown to form cm-sized free-standing, tough and elastic, nanofibrillar silk nanomembranes, permeable to macromolecules of various sizes, and able to support the establishment of a confluent layer of keratinocytes seeded on either side. In Paper IV, the nanofibrillar silk membranes were shown able to support cell co-culture to generate a model of the blood vessel wall in vitro.

In Paper V, an alveolar-capillary model was established by seeding lung epithelial and endothelial cells on opposite sides of nanofibrillar silk membranes. The results showed the formation of an in vivo like tissue through the expression of junctional complexes and the production of essential surfactants. The silk membranes were also for the first time integrated into a microfluidic device to expose the endothelium to flow-induced shear stresses.

Altogether, the work conducted in this thesis shows promise to the use of the FN-4RepCT silk protein both for coating surfaces of bio-inert synthetic polymeric materials and forming thin and nanofibrillar membranes for the engineering of tissues in vitro.

Abstract [sv]

Spindelsilke är ett naturligt proteinbaserat material som är välkänt för sin medicinska användning och sina anmärkningsvärda mekaniska egenskaper. Strukturer gjorda därav är både starka och elastiska och har visat sig vara lämpliga matriser för vävnadsteknik. Eftersom det naturliga spindelsilket är svårt att få tag på, används i stället rekombinationsteknologi för att producera partiella silkesproteiner. Denna avhandling undersöker användningen av ett sådant partiellt spindelsilkeprotein som har funktionaliserats med ett celladhesionsmotiv från fibronektin, FN-4RepCT, för att belägga ytor på syntetiska polymerer, samt forma nanofibrillära membran för modellering av vävnader in vitro.

I Artikel I visades att silkesproteinet, tillsammans med celler, spontant formar en beläggning på ytan av olika polymerer, och därmed kan användas för att funktionalisera dessa. Resultaten visade att samformuleringsmetoden underlättar eller t.o.m. möjliggör adhesion av cellerna till ytan, samt bibehåller cellernas viabilitet på material som vanligen används i kardiovaskulära transplantat.

I Artikel II utvecklades ett protokoll för att minska ytspänningen hos membran som är avsedda för att styra benregenerering. Detta för att möjliggöra för silkesproteiner att forma nanofibrillära silkesbeläggningar på denna typ av material. Silkesbeläggningen underlättade adhesion av cellerna, och befrämjade deras tillväxt så att monolager av vävnadsrepresentativa celler kunde bildas på vardera sidan av membranet.

I Artikel III visas det att silkesproteinet spontant bildar cm-stora fristående, starka och elastiska silkesnanomembran vid gränssnittet mellan luft och vätska. Molekyler av olika storlekar kan passera genom membranen, som även främjar etableringen av ett konfluent monolager av keratinocyter sådda på båda sidorna av membranet.

I Artikel IV påvisas det att dessa silkesmembran kan användas för samodling av två celltyper och på så sätt skapa en in vitro modell av blodkärlsväggen.

I Artikel V etablerades en alveolär-kapillär in vitro modell genom att odla lungepitel- och endotelceller på motsatta sidor av nanofibrillära silkesmembran. Cellerna hade speciella strukturer på sin yta som förankrade dem med varandra, och producerade även essentiella yt-surfaktanter, vilket sammantaget visade att en in vivo-liknande vävnad hade bildats. Silkesmembranen integrerades också i ett mikroflödes-chip, något som aldrig tidigare genomförts, för att kunna exponera endotelet för flödesinducerade skjuvkrafter.

Sammantaget visar arbetet som utförts i denna avhandling att silkesproteinet FN-4RepCT är lovande för att belägga bioinerta ytor av syntetiska polymerer, samt för att bilda tunna, nanofibrillära membran för konstruktion av vävnader in vitro.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 98
Series
TRITA-CBH-FOU ; 2022:28
Keywords
recombinant spider silk, surface functionalization, in vitro tissue models, membrane-based models, barrier tissues, cell co-culture, tissue engineering
National Category
Biomaterials Science
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-310940 (URN)978-91-8040-194-4 (ISBN)
Public defence
2022-05-20, Oskar Kleins Auditorium, https://kth-se.zoom.us/j/69561519449, Roslagstullsbacken 21, Stockholm, 10:30 (English)
Opponent
Supervisors
Note

QC 20220516

Available from: 2022-04-12 Created: 2022-04-12 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Tasiopoulos, Christos Panagiotis
By organisation
Protein Technology
Biomaterials Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf