kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The role of design parameters on the performance of diffuse ceiling ventilation systems – thermal comfort analyses for indoor environment
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Sustainable Buildings. (Fluid and climate Technology)ORCID iD: 0000-0001-7032-3049
Aalborg University Copenhagen.
Aalborg University Copenhagen.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Sustainable Buildings. School of Business, Society and Engineering, Mälardalen University, Sweden.ORCID iD: 0000-0002-9361-1796
2022 (English)In: Advances in Building Energy Research, ISSN 1751-2549, E-ISSN 1756-2201, p. 1-19Article in journal (Refereed) Published
Abstract [en]

Thermal comfort conditions profoundly affect the occupants’ health and productivity. A diffuse ceiling ventilation system is an air distribution system in which the air is supplied to the occupied zone with relatively a low velocity through the perforated panels installed in the ceiling. The current study evaluated the impact of diffuse ceiling design parameters, i.e. diffuse panel configurations and heat load distributions, on the thermal comfort condition of the occupants. In this regard, the computational fluid dynamics technique was used to evaluate thermal comfort conditions in a waiting room, meeting room and office. The central and dispersal configuration of active diffuse panels was considered. The PMV-PPD model was applied to evaluate the overall occupants’ comfort, while the draft rate was considered to assess local thermal comfort. The model validation was performed by comparing the collected laboratory measurement data. Overall, the results indicated that the central active diffuse panel configuration had a better thermal comfort than the dispersed one. The evaluation of dispersed configuration in realist scenarios, including office and waiting room, had the highest dissatisfaction, with a PPD value of 9%. Local thermal comfort assessment revealed that dispersed configuration had the highest draft rate of 14% in the office.

Place, publisher, year, edition, pages
Informa UK Limited , 2022. p. 1-19
Keywords [en]
Diffuse ceiling ventilation, thermal comfort, PMV-PPD model, draft rate, computational fluid dynamics simulation
National Category
Other Civil Engineering
Research subject
Civil and Architectural Engineering, Fluid and Climate Theory
Identifiers
URN: urn:nbn:se:kth:diva-311613DOI: 10.1080/17512549.2022.2109211ISI: 000840368800001Scopus ID: 2-s2.0-85135948096OAI: oai:DiVA.org:kth-311613DiVA, id: diva2:1655200
Funder
Swedish National Infrastructure for Computing (SNIC), 2018-05973Swedish Research Council Formas, 2017-01088
Note

QC 20220817

Available from: 2022-05-01 Created: 2022-05-01 Last updated: 2023-09-21Bibliographically approved
In thesis
1. Computational fluid dynamics application in indoor air quality and health
Open this publication in new window or tab >>Computational fluid dynamics application in indoor air quality and health
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Indoor air quality directly affects the comfort, performance, and well-being of occupants. Indoor pollution can cause immediate or long-term health effects and has been responsible for 4.1% of global deaths in recent decades. In operating rooms, providing a high indoor air quality is especially critical as surgical site infection can occur in patients due to air contamination in operating rooms.

Surgical site infections due to antibiotic resistant bacteria may threaten the safety and lives of millions of people each year. To moderate and reduce indoor contamination, it is necessary to select a proper ventilation strategy.Improving ventilation system performance requires a deep understanding of airflow patterns and contamination distribution.

This thesis adopted computational fluid dynamics to evaluate airflow patterns and the spread of airborne contaminations in indoor environments. Moreover, we sought to provide an approach to facilitate transferring the obtained knowledge to medical experts and decisionmakers to reduce the infection risk after the surgery.

The use of warming blankets has raised the concern about surgical site infections. Warming blankets are used to prevent hypothermia in patients during surgery. However, our results showed that these warming blankets reduce the bacteria-carrying particles level at the wound due to warm upward airflows.

Surgical lamps can block the airflow and generate a low-velocity area under the lamp that increases the accumulation of contaminants. The simulation results revealed that a novel fan-mounted surgical lamp reduced the contamination level to an acceptable range for infection-prone surgeries. This novel surgical lamp successfully reduced contamination in the operating room supplied with both turbulent mixing and laminar airflow ventilations.

In another study, we implemented a protective curtain and showed that this strategy could significantly reduce the exposure level of the medical team to a patient with infectious respiratory disease. This novel protective curtain is located between the patient’s upper body and the lower part during surgery. We found a 57% reduction in bacteria-carrying particle concentration at the wound by adopting this curtain. Thus, using this protective curtain can reduce the exposure level of both patient and surgical team in the operating room.

Besides investigating the performance of ventilation systems in hospitals, we investigated the application of diffuse ceilings ventilations in clinics, especially waiting rooms. Diffuse ceiling ventilation systems are common air distribution systems in offices and schools. Based on simulation results, a diffuse ceiling with a central opening and evenly distributed heat loads resulted in the highest cooling capacity and thermal comfort in clinic waiting rooms.

We have visualised the airflow field and airborne particles in operating rooms with the help of virtual reality techniques. We found the virtual reality environment more engaging to understand the airflow field and particle movements in operating rooms.

Abstract [sv]

Luftkvaliteten inomhus påverkar människors komfort, ochprestationsförmåga. Luftföroreningar inomhus kan orsaka omedelbaraoch långvariga hälsoeffekter och har orsakat 4,1 % av de globala dödsfallenunder de senaste decennierna. I operationssalar på sjukhus är det viktigtatt tillhandahålla god luftkvalitet. Infektioner i samband med operationkan drabba patienter på grund av förorenad luft i operationssalen.

Förekomst av infektioner i samband med kirurgiska ingrepp, och tillföljd av antibiotikaresistenta bakterier kan hota patientsäkerheten förmiljontals personer varje år. För att kontrollera och minska föroreningarinomhus är det nödvändigt att välja en korrekt ventilationsstrategi. För attförbättra ventilationssystemets prestanda krävs förståelse av hurventilationsluften strömmar och hur föroreningar sprider sig i rum.

I denna avhandling används numerisk strömningsmekanik ochexperimentella data för att utvärdera luftflödesmönster och spridning avluftburna föroreningar i inomhusmiljöer. Dessutom avser detta arbete atttillhandahålla ett tillvägagångssätt för att underlätta kunskapsöverföringtill medicinska experter och beslutsfattare för att minska infektionsriskenefter operationer.

Det finns oro för att patienter ska drabbas av postoperativasårinfektioner på grund av användning av medicintekniska produkter ioperationssalar, såsom värmande filtar. Värmefiltar används för attförhindra hypotermi hos patienter. Våra resultat visade dock attvärmefiltar minskar nivån av bakteriebärande partiklar vid såret på grundav uppåtgående varma luftflöden.

Operationslampor blockerar luftflödet och genererar ett område medlåg lufthastighet som ökar risken för ansamling av kontaminanter.Simuleringsresultaten visade att en ny fläktmonterad operationslampaminskade kontamineringsnivån till acceptabel nivå för infektionskänslig kirurgi. Den nya fläkten minskade kontaminationen i operationssalen vidsåväl turbulent som vid laminärt luftflöde.

I en annan studie implementerade vi en skyddande gardin som visadeatt den avsevärt minskade exponeringsnivån för det kirurgiska teametunder operation av en patient med infektion i luftvägarna. Dessutomrapporterades en 57 % minskning av den bakteriebärandepartikelkoncentrationen vid såret då gardinen användes. Skyddsgardinenförbättrar således säkerheten både för patienten och för operationsteamet.

Vi undersökte användning av diffunderande takventilation på kliniker.Diffunderande takventilation är vanligt förekommandeluftdistributionssystem i kontor och skolor. Baserat på simuleringar, gavinnertak med diffunderande tilluft ur central öppning, vid jämnt fördeladevärmelaster, den högsta kylkapaciteten och termiska komforten iklinikernas väntrum.

För visualisering av numeriska simuleringar användes teknik förvirtuell verklighet. Den virtuella verklighetsmiljön gav ökad upplevelse ochförståelse av luftflödesfältet och partikelrörelserna i operationssalar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 66
Series
TRITA-ABE-DLT ; 2211
Keywords
Ventilation systems, Indoor air quality (IAQ), Bacteria-carrying particles (BCP), Infectious respiratory disease, Operating room (OR), Thermal comfort, Computational fluid dynamics (CFD), ventilationssystem, bakteriebärande partiklar, infektionssjukdomar i luftvägarna, operationsrum, termisk komfort, numerisk strömningsmekanik
National Category
Other Civil Engineering
Research subject
Civil and Architectural Engineering, Fluid and Climate Theory
Identifiers
urn:nbn:se:kth:diva-311616 (URN)978-91-8040-188-3 (ISBN)
Public defence
2022-05-30, Kollegiesalen, Brinellvägen 8, KTH Campus, Videolänk: https://kth-se.zoom.us/meeting/register/u50tcuqoqzMiHd3HTd5gSLH46ifFK7UG_Gu5, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council Formas, 2017-01088Swedish National Infrastructure for Computing (SNIC), 2018-05973
Note

QC 20220502

Available from: 2022-05-02 Created: 2022-05-01 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sadeghian, ParastooSadrizadeh, Sasan

Search in DiVA

By author/editor
Sadeghian, ParastooSadrizadeh, Sasan
By organisation
Sustainable Buildings
In the same journal
Advances in Building Energy Research
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 199 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf