Open this publication in new window or tab >>2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The rock joint shear strength at field scale is an important design parameter and remains a challenge for rock mechanics engineers. In Sweden, there exist a large number of concrete dams that are founded on rock masses which in many cases contain sub-horizontal rock joints. The action of water pressure and uplift forces makes sliding along these sub-horizontal rock joints one of the most critical failure mechanisms to be considered in a dam’s safety evaluation. Despite the various attempts to develop empirical, analytical, and numerical methods in recent decades, the uncertainty in the prediction of the peak shear strength of rock joints is still significant. None of the existing methods today fully capture the complex interaction between all the relevant parameters.
The overall aim of this research project is to develop a methodology for the prediction of the peak shear strength of rock joints in cases where the whole joint surface is not accessible, such as the foundation under an existing concrete dam. To accomplish this, the prediction of rock joint peak shear strength was studied (1) numerically using discrete element method (DEM), (2) analytically by developing a peak shear strength criterion, and (3) experimentally by characterising the surface roughness and aperture of the tested samples based on high-resolution scanning prior to the direct shear tests.
The results of the numerical study showed that the shear test environment in PFC2D used in this project has the capability of simulating the peak shear strength of actual rock joints both qualitatively, and quantitatively. However, a 3D approach is needed to overcome the limitations of the 2D approach, and to realistically simulate the interaction between the asperities in contact during shearing.
The results of the analytical study showed that the matedness between the contact surfaces of natural, unfilled rock joints needs to be accounted for when predicting their peak shear strength. In this study, the matedness of the tested natural, unfilled rock joints was estimated based on measurements of the aperture between their contact surfaces. The relationship between matedness and joint surface aperture was integrated in a further developed peak shear strength criterion. Furthermore, the performed investigations on two large-size rock joint samples showed that their peak shear strength can be reasonably well predicted based on information from several small-size samples, such as drill cores. In this work, the drill cores were simulated based on the scanning measurements of the joint surfaces at large size. The measured 3D roughness and aperture in each simulated drill core was used to predict their respective peak shear strength by applying the further developed peak shear strength criterion. Each simulated drill core was considered as an independent component of a parallel system. The peak shear strength of the large-size samples was predicted based on the mean value of the predicted peak shear strength of the small-size samples, including the statistical uncertainty due to the number of small-size samples used in the prediction. The main benefit of this approach is that it may enable prediction of the peak shear strength of large natural, unfilled rock joints under conditions of difficult access, such as a sub-horizontal rock joint under a concrete dam. The developed methodology has only been tested on two large-size samples and further research is necessary to verify its applicability.
Abstract [sv]
Bergssprickors skjuvhållfasthet i fältskala är en viktig parameter vid bergmekanisk dimensionering och en utmaning för ingenjörer i bergmekanik. Ett exempel på konstruktioner vars stabilitet kan vara beroende av denna parameter är betongdammar. I Sverige finns ett sort antal betongdammar grundlagda på berg, där bergmassan i flera fall genomkorsas av sub-horisontella sprickaplan. Inverkan från det horisontella vattentrycket i kombination med upptryck innebär att glidning längs de subhorisontella sprickplanen utgör en kritisk brottmekanism som måste beaktas när dammarnas säkerhet utvärderas. Trots olika försök under de senaste åren för att utveckla empiriska, analytiska, och numeriska metoder för att prediktera bergssprickors skjuvhållfasthet är osäkerheten i dessa metoder fortfarande stor. Ingen av de befintliga metoderna tar idag hänsyn till samtliga parametrar, och hur de samverkar, för att mobilisera en sprickas skjuvhållfasthet.
Det övergripande syftet med detta doktorandprojekt är att utveckla en metodik för bestämning av bergssprickors skjuvhållfasthet i fall där hela sprickytan inte är tillgänglig, såsom en bergspricka belägen under en befintlig betongdamm. För att uppnå detta har skjuvhållfastheten för bergsprickor studerats (1) numeriskt med diskret element modellering (DEM), (2) analytiskt genom att utveckla ett brottkriterium, och (3) experimentiellt genom att utföra direkta skjuvförsök där sprickytorna karaktäriserats med högupplöst optisk scanning.
Resultaten från den numeriska studien visade att den utvecklade skjuvmiljön i PFC2D som använts i detta projekt kan simulera skjuvhållfasthet för verkliga bergssprickor både kvalitativt och kvantitativt. Resultaten visar dock att en skjuvmiljö i 3D som realistiskt kan simulera samverkan mellan de olicka klackarna i kontakt under skjuvning är nödvandigt att utveckla i framtida projekt.
Resultaten från den analytiska studien visade att passningen för naturliga, ofyllda sprickor behöver beaktas för att prediktera dess hållfasthet. I denna studie har sprickans passning uppskattats baserad på mätningar av sprickvidden. Förhållande mellan sprickans passning och sprickvidd har integrerats i ett vidareutveckalt kriterium. De utförda arbetena i laboratorium med två större bergprover visade att deras skjuvhållfasthet kan predikteras med acceptabla resultat baserad på information från flera prov i mindre storlek, såsom borrkärnor. Borrkänorna i denna studie simulerades baserat på utförd skanning av sprickytorna. Den uppmätta sprickvidden och sprickråheten i 3D för varje simulerad borrkärna användes för att prediktera deras skjuvhållfasthet med det vidareutvecklade kriteriet. Varje enskild borrkärna tagen från det storskaliga provet betraktades som en oberoende komponent i ett paralellsystem. Skjuvhållfastheten för de två storskaliga proverna predikterades genom att beräkna medelvärdet för skjuvhållfastheten för de mindre simulerade borrkärnorna. Den främsta nyttan med denna metodik är att den kan utgöra en möjlig väg framåt för att prediktera skjuvhållfastheten för bergssprickor i fall där sprickytan inte är helt tillgänglig, såsom en subhorisontell spricka belägen under en betongdamm. Metodiken har än så länge enbart testats på två större provkroppar och ytterligare forskning är nödvändig för att säkerställa dess tillämpbarhet.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 88
Series
TRITA-ABE-DLT ; 2218
Keywords
Rock joints, peak shear strength, DEM, matedness, aperture, Bergssprickor, skjuvhållfasthet, DEM, sprickans passning, sprickvidd
National Category
Engineering and Technology Civil Engineering Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Soil and Rock Mechanics
Identifiers
urn:nbn:se:kth:diva-311775 (URN)978-91-8040-217-0 (ISBN)
Public defence
2022-06-08, F3, Lindstedtsvägen 26, KTH Campus, Videolänk: https://kth-se.zoom.us/i/65221595411, Stockholm, 13:00 (English)
Opponent
Supervisors
Note
QC220510
2022-05-102022-05-032022-06-25Bibliographically approved