kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Observational characteristics of radiation-mediated shocks in photospheric gamma-ray burst emission
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics. Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden..ORCID iD: 0000-0001-7414-5884
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0002-9769-8016
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Emission from the photosphere in gamma-ray burst (GRB) jets can be substantially affected by subphotospheric energy dissipation, which is typically caused by radiation-mediated shocks (RMSs). We study the observational characteristics of such emission, in particular the spectral signatures. Invoking an internal collision framework to estimate relevant shock initial conditions, we use an RMS model to generate synthetic photospheric spectra as they would appear in the Fermi GBM detectors. The synthetic spectra are then fitted with a standard cutoff power-law (CPL) function to compare with corresponding catalogue distributions. We find that the observed distributions for both the low-energy index, αcpl, and the peak energy, Epeak, are well reproduced by the model. This requires that the free fireball acceleration starts at r0 ∼ 1010 cm, which is in agreement with hydrodynamical simulations. The CPL function is a good fit to the synthetic spectra over the Fermi GBM energy range in most cases, but adding an additional spectral break at low energies can improve the fit in the high signal-to-noise regime. We also identify a non-negligible parameter region for what we call “optically shallow shocks”: shocks that do not accumulate enough scatterings to reach steady state before decoupling. We show that these may occur for optical depths as deep as τ ∼ 55 uu−2 , where uu is the upstream four-velocity in the shock rest frame. We conclude that photospheric emission, which has passed through an RMS, can reproduce the dominant fraction of the observed catalogue distribution of GRB parameters.

Keywords [en]
Gamma-ray bursts, radiation-mediated shocks
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Physics, Atomic, Subatomic and Astrophysics
Identifiers
URN: urn:nbn:se:kth:diva-311949OAI: oai:DiVA.org:kth-311949DiVA, id: diva2:1656336
Note

QC 20220509

Available from: 2022-05-05 Created: 2022-05-05 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Cosmic rays and shock physics in gamma-ray bursts
Open this publication in new window or tab >>Cosmic rays and shock physics in gamma-ray bursts
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Gamma-ray bursts (GRBs) are the most luminous events in the known universe. Due to their tremendous energy output, they serve as laboratories of physics far beyond anything that we can hope to achieve in terrestrial experiments. However, the insights we can gain from these violent phenomena depend on our understanding of the relevant physical processes at work. In this thesis, I study emission processes in GRBs. Specifically, I focus on GRBs as potential sources of ultra-high-energy cosmic rays (UHECRs) and investigate the cause of the early electromagnetic emission. 

UHECRs are extraterrestrial particles with incredible energies. Despite decades of research, the origin of UHECRs remains unknown. GRBs have long been one of the most promising source candidates. In Papers I and II, we estimate the emission expected from electrons that are co-accelerated with the UHECRs at the source. We show that GRBs would have to be much brighter in the optical band if they harbored substantial UHECR acceleration, disfavoring a UHECR-GRB connection. 

In Papers III, IV, and V, we study the possible cause of the γ-ray emission that has given GRBs their name. In Paper III, we develop a model capable of describing emission from shocks in the optically thick regions of GRBs. Specifically, our model is uniquely capable of performing fits to the observed data. In paper V, we use this model to examine observational characteristics of the γ-ray emission expected from optically thick shocks. We find that many key signatures of GRBs, such as the low-energy slope and the peak energy of the spectrum, are naturally reproduced by the model. In Paper IV, we focus on synchrotron radiation from high-energy protons as the possible cause for the γ-ray emission and limit the parameter space where such models are viable. However, within the allowed parameter range, we find that some very specific spectral features are obtained, which are consistent with a subset of observed GBRs. 

Abstract [sv]

Gammablixtar (engelska “gamma-ray bursts”, GRBs) är de mest ljusstarka fenomen vi känner till i universum. På grund av deras otroliga energier ger de oss möjligheten att studera fysik i miljöer vi aldrig skulle kunna skapa i laboratorier på jorden. Hur mycket kunskap vi kan få om dessa fenomen beror dock p ̊a hur väl vi förstår oss på de relevanta fysikaliska processerna. I denna avhandling studerar jag strålningsprocesser i GRBs. Mer specifikt, så undersöker jag huruvida GRBs kan accelerera högenergetisk kosmisk strålning (engelska “ultra-high energy cosmic rays”, UHECRs) och ursprunget för den elektromagnetiska strålningen. 

Varifrån UHECRs kommer ̈ar fortfarande okänt trots decennier av forskning. GRBs har länge varit en av de mest lovande källorna. I Artikel I och II studerar vi strålningen från elektroner som accelereras på samma plats som UHECRs. Vi visar att om GRB var effektiva acceleratorer av UHECRs så skulle de nödvändigtvis behöva vara mycket mer ljusstarka i optiska våglängder. Detta talar emot att GRBs som de primära källorna för UHECRs. 

I Artikel III, IV och V studerar vi uppkomsten till γ-strålningen som gett GRBs sitt namn. I Artikel III utvecklar vi en modell som kan simulera shocker i de optiskt tjocka delarna av en GRB. Modellen är den första i sitt slag som kan användas för anpassning av data. I Artikel V använder vi denna model f ̈or att analysera vilka typer av observationella signaturer man kan förvänta sig av shocker i de optiskt tjocka delarna. Vi finner att många egenskaper hos GRBs naturligt reproduceras av modellen, t.ex. lutning vid låga energier och högsta energin i spektrat. I Artikel IV studerar vi högenergetiska protoner som möjligt orsak till γ-strålningen och begränsar den möjliga parameterrymden för liknande modeller. Där modellen fungerar visar vi att man kan förvänta sig vissa säregna karaktärsdrag i spektrat, som faktiskt liknar beteendet hos en del GRBs. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 92
Series
TRITA-SCI-FOU ; 2022:24
Keywords
astrophysics, gamma-ray bursts, cosmic rays, radiation-mediated shocks
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Physics, Atomic, Subatomic and Astrophysics
Identifiers
urn:nbn:se:kth:diva-311951 (URN)978-91-8040-252-1 (ISBN)
Public defence
2022-06-03, FB42, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 220509

Available from: 2022-05-09 Created: 2022-05-05 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Ryde, Felix

Search in DiVA

By author/editor
Samuelsson, FilipRyde, Felix
By organisation
Particle and Astroparticle Physics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf