kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Current crowding in nanoscale superconductors within the Ginzburg-Landau model
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory. KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0001-8488-9035
KTH, School of Engineering Sciences (SCI), Physics, Condensed Matter Theory.ORCID iD: 0000-0003-3794-0816
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.ORCID iD: 0000-0003-2080-9897
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The current density in a superconductor with turnarounds or constrictions is non-uniform due to a geometrical current crowding effect. This effect reduces the critical current in the superconducting structure compared to a straight segment and is of importance when designing superconducting devices. We investigate the current crowding effect in numerical simulations within the generalized time-dependent Ginzburg-Landau (GTDGL) model. The results are validated experimentally by measuring the magnetic field dependence of the critical current in superconducting nanowire structures, similar to those employed in single-photon detector devices. Comparing the results with London theory, we conclude that the reduction in critical current is significantly smaller in the GTDGL model. This difference is attributed to the current redistribution effect, which reduces the current density in weak points of the superconductor and counteracts the current crowding effect. We numerically investigate the effect of fill factor on the critical current in a meander and conclude that the reduction of critical current is low enough to justify fill factors higher than 33 % for applications where detection efficiency is critical. Finally, we propose a novel meander design which can combine high fill factor and low current crowding.

Keywords [en]
SSPD, Current crowding, Superconductor, Ginzburg-Landau model
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:kth:diva-312131DOI: 10.48550/arXiv.2112.05443OAI: oai:DiVA.org:kth-312131DiVA, id: diva2:1657742
Note

QC 20220518

Available from: 2022-05-12 Created: 2022-05-12 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Theory for superconducting few-photon detectors
Open this publication in new window or tab >>Theory for superconducting few-photon detectors
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

High-performance photon detectors are essential for fiber communication, which is the foundation of the modern internet. Emerging quantum information technologies, such as quantum key distribution, impose new requirements on the photon detectors used. Superconducting single-photon detectors (SSPDs) exhibit high efficiencies, low dark count rates and fast recovery times, which makes them commonly used for quantum applications.

The ability to resolve photon numbers in a wave packet is useful in applications like imaging, characterization of light sources, and in optical quantum computation. Ordinary single-photon detectors like SSPDs are not photon-number resolving (PNR), and are only capable of determining if light is present or not. However, photon-number resolution may be achieved by combining multiple single-photon detectors in an array and split the input over them.

In this thesis, we introduce and model PNR detectors based on multiplexing single-photon detectors. Using these models, we investigate the requirements on the single-photon detectors when they are used in a multiplexed scheme and we investigate how a PNR detector may be used in imaging applications. We experimentally realize a temporally multiplexed PNR detector based on SSPDs and show that it is capable of accurately determining the mean photon number for a series of wave packets.

We also model a SSPD using the generalized time-dependent Ginzburg-Landau model to investigate how the geometry of the SSPD affects the performance of the detector. We show that the geometric reduction of the critical current in turnarounds is less pronounced than previously reported, which relaxes design restrictions.

Abstract [sv]

Högpresterande detektorer är nödvändiga för fiberbaserad kommunikation, vilket är en av grundpelarna i det moderna internet. Ny kvantinformationsteknik såsom kvantkryptering ställer nya krav på detektorerna som används. Supraledande enkelfotondetektorer (SSPD) har hög verkningsgrad, lågt antal falska detektioner och snabb återhämtningstid, vilket har gjort dem till ett populärt val för kvantmekaniska tillämpningar.

Möjligheten att mäta antalet fotoner i vågpaket är användbart i tillämpningar såsom att upplösa bilder, karaktärisering av ljuskällor och i optiska kvantberäkningar. Vanliga enkelfotondetektorer så som SSPDs saknar förmågan att mäta antalet fotoner och har bara möjlighet att bestämma om det finns ljus eller inte. Det går dock att bygga fotonräknande detektorer genom att dela upp ljuset över flera enkelfotondetektorer.

I denna avhandling så introducerar vi och modellerar fotonräknande detektorer som är baserade på flera enkelfotondetektorer. Genom att använda dessa modeller så undersöker vi kraven som ställs på enkelfotondetektorerna och undersöker hur dessa fotonräknande detektorer kan användas för att upplösa bilder. Vi demonstrerar även en fotonräknande detektor genom att använda SSPDs och visar att denna detektor är kapabel av att bestämma medelantalet fotoner givet en serie av vågpaket.

Vi modellerar också SSPDs genom att använda en generaliserad form av den tidsberoende Ginzburg-Landau modellen för att undersöka hur detektorns geometri påverkar dess egenskaper. Vi drar slutsatsen att den geometriska reduktionen av den kritiska strömmen är mindre än vad som tidigare har rapporterats, vilket tillåter en friare design av geometrin.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 68
Series
TRITA-SCI-FOU ; 2022:25
National Category
Condensed Matter Physics Other Physics Topics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-312132 (URN)978-91-8040-253-8 (ISBN)
Public defence
2022-06-10, https://kth-se.zoom.us/j/68636284485, Sal FB42, Albanova, Roslagstullsbacken 21, Stockholm, 14:00
Opponent
Supervisors
Available from: 2022-05-12 Created: 2022-05-12 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://arxiv.org/abs/2112.05443

Authority records

Jönsson, MattiasVedin, RobertGyger, SamuelSteinhauer, StephanZwiller, ValWallin, MatsLidmar, Jack

Search in DiVA

By author/editor
Jönsson, MattiasVedin, RobertGyger, SamuelSteinhauer, StephanZwiller, ValWallin, MatsLidmar, Jack
By organisation
Condensed Matter TheoryApplied PhysicsQuantum and Biophotonics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 105 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf