kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Calibrating Driving Styles in Motion Planning for Autonomous Vehicles
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-8163-1004
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

To display perceivably different driving styles is an important ability for autonomous vehicles in real-life traffic scenarios. By encouraging predictable driving styles, we can promote trust and collaboration between vehicle and human drivers in traffic. However, many motion planners lack the ability to provide different driving styles using one method.As a result, many applications are overly defensive to ensure safety, and can not be tailored to the users' preferences. In this work, we build on our previous works on encoding perceivable driving styles using Signal Temporal Logic (STL) and generating motion planning trajectories using user preferences. We refine our previously proposed spatial constraints based on the Responsibility-Sensitive Safety (RSS) model. We illustrate how the motion planner can be parameterized to produce aggressive, neutral and defensive driving behaviors, respectively.  We evaluate the resulting driving styles on a set of real-life inspired driving scenarios, modeled in the Carla simulator and provide a detailed statistical analysis of the generated trajectories.

Keywords [en]
Motion Planning, Formal Methods, STL
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-312152OAI: oai:DiVA.org:kth-312152DiVA, id: diva2:1657998
Note

QC 20220518

Available from: 2022-05-13 Created: 2022-05-13 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Least-Violating Motion Planning for Traffic-Compliant Autonomous Driving
Open this publication in new window or tab >>Least-Violating Motion Planning for Traffic-Compliant Autonomous Driving
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Over the last decade, autonomous vehicles has received an increasing amount of interest from industries and research institutes. For autonomous vehicles to properly function alongside human drivers, safety guarantees are a must. Safety in traffic is more than just avoiding collisions with other drivers, it is also necessary to seamlessly act and interact in traffic.

Traffic is an environment rife with rules, both straightforward road rules, e.g. “stay in your lane”, and more subtle road rules, e.g. “give way to emergency vehicles”. Given the safety-critical nature of the environments in which an autonomous system needs to act, it is essential that the specification language chosen to encode its behaviour is able to express the full range of possible rules, both straightforward and subtle. Linear Temporal Logic (LTL) is a popular specification language used in motion planning. While LTL is suitable to express many basic rules, more elaborate rules need to incorporate continuous measures of satisfaction. For instance, it is possible to formalize ``maintain the speed limit'' in LTL. However, there is a big difference between violating the speed limit by \SI{2}{km/h} and \SI{30}{km/h}, this difference can not be quantified by LTL. Such measures are offered by Signal Temporal Logic (STL). In our work, we have used both LTL and STL to encode complex road rules including allowable distances to obstacles, as well as more complex road rules for various situations.

The aim of our work has been to formalize and verify safety guarantees for motion planning in autonomous vehicles. This thesis’ contribution encompasses three main venues of research in this area. First, current methods employed in formal synthesis for motion planning are too computationally expensive to reliably provide motion plans in real-time. To this end, we propose solutions to two different problems, scalability and guided sampling for sampling-based motion planners (Papers A and D). Second, we deal with the problem of encoding road rules for motion planning applications. We propose a new spatial-temporal quantitative semantic for STL, that allows the user to calibrate preference for efficiency (duration of mission) against perceived safety (violation of specification)(Paper B). We later show how STL can be used to encode traffic behaviours (Paper E). Third, we investigate the problem of least-violating motion planning in mixed-traffic scenarios (Papers C and E). Here we consider two different viewpoints, humans as dynamic obstacles to avoid (Paper C) and humans as participants in traffic (Paper E). We demonstrate how least-violating motion planning combined with STL, can be utilized to encode road rules in such a way as to produce different forms of driving styles that are perceivable by human users.

Abstract [sv]

Självkörande fordon har under de senaste åren uppmärksammats från både industrin och akademien. För att självkörande fordon ska fungera jämte människor i trafiken är säkerhetsgarantier ett måste. Säkerhet i trafiken är mer än att bara undgå kollisioner med andra trafikanter. Det är även nödvändigt att dessa fordon kan interagera och sammarbeta med andra trafikanter. 

Trafik är en miljö med många regler, både tydliga, såsom ``stanna i ditt körfält'', och mer otydliga regler, såsom ``väj för utryckningsfordon''. Givet den säkerhetskritiska karaktären hos den miljö där det självkörande fordonet verkar, så måste ett specifikationsspråk som kan uttrycka både tydliga och subtila regler användas. Linjär tidslogik (LTL) är ett populärt specifikationsspråk som används inom banplanering. Många grundläggande regler kan beskrivas med LTL, men mer komplexa regler kräver att man kan mäta graden av tillfredsställelse. Det är möjligt att formalisera ``håll dig till hastighetsbegränsningen'' med LTL, men det är en stor skillnad mellan att bryta hastighetsbegränsningen med \SI{2}{km/h} och \SI{30}{km/h}. Denna skillnad kan inte mätas med LTL. Signal tidslogik (STL) kan användas för att mäta sådana skillnader. I vårt arbete använder vi LTL och STL för att formalisera avancerade trafikregler för att t.ex. hålla avstånd till väghinder, samt mer avancerade trafikregler i olika situationer. 

Vårt mål har varit att formalisera och verifiera säkerhetsgarantier för banplanering till självkörande fordon. Denna avhandlings bidrag innefattar tre huvudsakliga spörsmål. Till att börja med identifierar vi att nuvarande metoder för banplanering har för hög tidskomplexitet för att tillförlitligt implementeras för att uppnå banplanering i realtid. Vi föreslår lösningar för två problem inom detta område, skalbarhet, och guidad sampling för sampling-baserad banplanering (Artiklar A och D). Vidare undersöker vi problemet med att formalisera trafikregler för banplanering. Vi föreslår en ny rum-tids kvantitativ semantik för STL, som möjliggör användaren att kalibrera banans effektivitet (uppgiftens varaktighet) mot användarens uppfattade säkerhet (överträdelse av formaliserade regler)(Artikel B). Slutligen visar vi hur STL kan användas för att formalisera beteende i trafiken (Artikel E). Vi undersöker problemet med banplanering som minimerar säkerhetsöverträdelse i trafikscenarion med människor inblandade (Artiklar C och E). I dessa verk har vi två olika synvinklar, antingen människor som dynamiska hinder som måste undvikas (Artikel C), eller människor som medtrafikanter (Artikel E). Vi visar hur vår metod, kombinerad med STL, kan användas för att formalisera trafikregler på sådant sätt att det går att generera olika körstilar som kan uppfattas av människor.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 75
Series
TRITA-EECS-AVL ; 2022:21
Keywords
Motion Planning, Formal Methods, Temporal Logic
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-312153 (URN)978-91-7873-929-5 (ISBN)
Public defence
2022-06-01, https://kth-se.zoom.us/j/67837765464, F3, Lindstedtsvägen 26 & 28, Stockholm, 15:00 (English)
Opponent
Supervisors
Note

QC 20220516

Available from: 2022-05-16 Created: 2022-05-13 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Karlsson, Jesper

Search in DiVA

By author/editor
Karlsson, Jesper
By organisation
Robotics, Perception and Learning, RPL
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 629 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf