kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interpretation of the DOME Recommendations for Machine Learning in Proteomics and Metabolomics
Leiden Univ, Ctr Prote & Metabol, Med Ctr, NL-2300 RC Leiden, Netherlands..ORCID iD: 0000-0002-5865-8994
Friedrich Schiller Univ, Fac Math & Comp Sci, D-07743 Jena, Germany..
VIB, VIB UGent Ctr Med Biotechnol, Ghent, Belgium.;Univ Ghent, Dept Biomol Med, B-9052 Ghent, Belgium..
Eberhard Karls Univ Tubingen, WSI ZBIT, D-72076 Tubingen, Germany..ORCID iD: 0000-0003-1739-4598
Show others and affiliations
2022 (English)In: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 21, no 4, p. 1204-1207Article in journal (Refereed) Published
Abstract [en]

Machine learning is increasingly applied in proteomics and metabolomics to predict molecular structure, function, and physicochemical properties, including behavior in chromatography, ion mobility, and tandem mass spectrometry. These must be described in sufficient detail to apply or evaluate the performance of trained models. Here we look at and interpret the recently published and general DOME (Data, Optimization, Model, Evaluation) recommendations for conducting and reporting on machine learning in the specific context of proteomics and metabolomics.

Place, publisher, year, edition, pages
American Chemical Society (ACS) , 2022. Vol. 21, no 4, p. 1204-1207
National Category
Analytical Chemistry Biochemistry Molecular Biology Bioinformatics (Computational Biology)
Identifiers
URN: urn:nbn:se:kth:diva-312232DOI: 10.1021/acs.jproteome.1c00900ISI: 000784194300033PubMedID: 35119864Scopus ID: 2-s2.0-85124297682OAI: oai:DiVA.org:kth-312232DiVA, id: diva2:1658253
Note

QC 20220516

Available from: 2022-05-16 Created: 2022-05-16 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Käll, Lukas

Search in DiVA

By author/editor
Palmblad, MagnusKohlbacher, OliverKäll, LukasNoble, William Stafford
By organisation
Science for Life Laboratory, SciLifeLabGene Technology
In the same journal
Journal of Proteome Research
Analytical ChemistryBiochemistryMolecular BiologyBioinformatics (Computational Biology)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf