Privacy is often the first line of defense against cyber-physical attacks. In this paper, we derive guarantees for the privacy of structured inputs to linear time-invariant systems, where the eavesdropper either does not know the input or only knows parts of it a priori. The input is be parametrized by a mixture of discrete and continuous parameters. Privacy guarantees for these parameters are then derived using a Barankin-style bound. Given an open-loop control objective, a modification to the cost function is proposed to enhance privacy. Privacy-utility trade-off bounds are derived for these private open-loop control signals. Finally, the theoretical results are verified both using the physical Temperature Control Lab and a numerical simulation of it.
QC 20220530
PArt of proceedings ISBN 978-1-6654-3659-5