This study uses numerical experiments to investigate initial breakup morphology for conditions similar to those experienced in an emulsification device (e.g., a high-pressure homogenizer) (Rek = 33, We = 1-30, mu D/mu C = 22, PD/PC = 0.9, D/ri = 22). Results show breakup consisting of two phases: and 'oscillatory phase' where the drops are periodically deforming and relaxing, followed by a 'critical deformation phase' where the drop deforms continuously until initial breakup. Large drops (We > 13) go directly to the breakup phase and are highly deformed in multiple direction before bursting. Smaller drops (3 < We < 5) are less likely to go directly to the critical deformation phase and more likely to never reach it before exiting the device. These drops break by the formation of a single filament, creating two large fragments and a number of smaller satellites. Several turbulent structures contribute to critical deformation.
QC 20220530