kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Understanding greediness in map-predictive exploration planning
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-8640-1056
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-4815-9689
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-1170-7162
2021 (English)In: 2021 10th European Conference on Mobile Robots, ECMR 2021 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE) , 2021Conference paper, Published paper (Refereed)
Abstract [en]

In map-predictive exploration planning, the aim is to exploit a-priori map information to improve planning for exploration in otherwise unknown environments. The use of map predictions in exploration planning leads to exacerbated greediness, as map predictions allow the planner to defer exploring parts of the environment that have low value, e.g., unfinished corners. This behavior is undesirable, as it leaves holes in the explored space by design. To this end, we propose a scoring function based on inverse covisibility that rewards visiting these low-value parts, resulting in a more cohesive exploration process, and preventing excessive greediness in a map-predictive setting. We examine the behavior of a non-greedy map-predictive planner in a bare-bones simulator, and answer two principal questions: a) how far beyond explored space should a map predictor predict to aid exploration, i.e., is more better; and b) does shortest-path search as the basis for planning, a popular choice, cause greediness. Finally, we show that by thresholding covisibility, the user can trade-off greediness for improved early exploration performance.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2021.
Keywords [en]
Economic and social effects, Covisibility, Exploration process, Performance, Predictive exploration, Scoring functions, Shortest path searches, Thresholding, Trade off, Unknown environments, Forecasting
National Category
Robotics and automation
Identifiers
URN: urn:nbn:se:kth:diva-313229DOI: 10.1109/ECMR50962.2021.9568793ISI: 000810510000010Scopus ID: 2-s2.0-85118981841OAI: oai:DiVA.org:kth-313229DiVA, id: diva2:1663407
Conference
10th European Conference on Mobile Robots, ECMR 2021, 31 August 2021 through 3 September 2021, Virtual, Bonn, Germany
Note

Part of proceedings: ISBN 978-166541213-1

QC 20220602

Available from: 2022-06-02 Created: 2022-06-02 Last updated: 2025-05-06Bibliographically approved
In thesis
1. Exploration and Prediction: Beyond-the-Frontier Autonomous Exploration in Indoor Environments
Open this publication in new window or tab >>Exploration and Prediction: Beyond-the-Frontier Autonomous Exploration in Indoor Environments
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous exploration is a fundamental problem in robotics, where a robot must make decisions about how to navigate and map an unknown environment. While humans rely on prior experience and structural expectations to act under uncertainty, robotic systems typically operate without such priors, exploring reactively based only on what has been observed. The idea of incorporating predictions into exploration has been proposed previously, but the tools required to learn general, high-capacity models have only recently become available through advances in deep learning. This thesis addresses two tightly connected challenges: learning predictive models of indoor environments, and constructing exploration strategies that are able to benefit from such predictions. A core obstacle in this research area is a cyclic dependency: there is little value in developing better predictive models unless exploration methods can make effective use of them, and little value in de- signing such exploration methods unless reliable models exist. This dependency has historically limited progress. By breaking it, this thesis enables the study and development of both components in tandem. The thesis introduces deep generative models that capture structural regularities in indoor environments using autoregressive sequence modeling. These models outperform traditional approaches in predicting unseen regions beyond the robot’s current observations. However, standard exploration methods are shown to perform worse, not better, when informed by accurate predictions. To resolve this, new planning heuristics are proposed, including the distance advantage strategy, which prioritizes exploring regions that are likely to be more difficult to reach in the future. These methods allow predictive models to be used effectively, reducing path length by avoiding situations where the robot must backtrack to previously visited locations. Together, these contributions provide a foundation for autonomous exploration that is informed by learned expectations, and establish a framework where map-predictive modeling and decision-making can be studied and improved jointly.

Abstract [sv]

Autonom utforskning är ett grundläggande problem inom robotik, där en robot måste fatta beslut om hur den ska navigera och kartlägga en okänd miljö. Medan människor förlitar sig på tidigare erfarenheter och strukturella förväntningar för att agera under osäkerhet, arbetar robotsystem vanligtvis utan sådana s.k. priors och utforskar reaktivt, enbart baserat på vad som har observerats. Idén att införliva prediktioner i utforskning har föreslagits tidigare, men verktygen som krävs för att lära sig generella, modeller med hög kapacitet har först nyligen blivit tillgängliga genom framsteg inom djupinlärning. Denna avhandling behandlar två nära sammanlänkade utmaningar: att lära sig prediktiva modeller av inomhusmiljöer, och att konstruera utforskningsstrategier som kan dra nytta av sådana prediktioner. Ett centralt hinder inom detta forskningsområde är ett cykliskt beroende: det finns litet värde i att utveckla bättre prediktiva modeller om inte utforskningsmetoder effektivt kan utnyttja dem, och vice versa finns det litet värde i att utforma sådana utforskningsmetoder om inte tillförlitliga modeller finns. Detta beroende har historiskt sett begränsat framsteg. Genom att bryta detta beroende möjliggör denna avhandling parallell utveckling och analys av båda komponenterna. Avhandlingen introducerar djupa generativa modeller som fångar strukturella regelbundenheter i inomhusmiljöer med hjälp av autoregressiv sekvensmodellering. Dessa modeller överträffar traditionella metoder i att förutsäga osedda områden bortom robotens nuvarande observationer. Det visar sig dock att standardmetoder för utforskning presterar sämre, inte bättre, när de informeras av exakta prediktioner. För att lösa detta föreslås nya planeringsheuristiker, inklusive distance advantage-strategin, som prioriterar att utforska områden som sannolikt kommer vara svårare att nå i framtiden. Dessa metoder möjliggör ett effektivt utnyttjande av prediktiva modeller, vilket minskar färdvägens längd genom att undvika situationer där robeten behöver backa tillbaka till tidigare besökta platser, s.k. backtracking. Tillsammans utgör dessa bidrag en grund för autonom utforskning som är informerad av inlärda förväntningar, och etablerar ett ramverk där kartprediktion och beslutsfattande kan studeras och förbättras i samspel.

Place, publisher, year, edition, pages
Stocholm, Sweden: KTH Royal Institute of Technology, 2025. p. xiii, 35
Series
TRITA-EECS-AVL ; 2025:47
National Category
Robotics and automation
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-363168 (URN)978-91-8106-270-0 (ISBN)
Public defence
2025-05-27, Kollegiesalen, KTH Campus, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20250506

Available from: 2025-05-06 Created: 2025-05-06 Last updated: 2025-05-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ericson, LudvigDuberg, DanielJensfelt, Patric

Search in DiVA

By author/editor
Ericson, LudvigDuberg, DanielJensfelt, Patric
By organisation
Robotics, Perception and Learning, RPL
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf