kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Massive MIMO: Ten Myths and One Critical Question
Linköping Univ, S-58183 Linköping, Sweden..ORCID iD: 0000-0002-5954-434x
Linköping Univ, S-58183 Linköping, Sweden..
Nokia, Bell Labs, Nozay, France..
2016 (English)In: IEEE Communications Magazine, ISSN 0163-6804, E-ISSN 1558-1896, Vol. 54, no 2, p. 114-123Article in journal (Refereed) Published
Abstract [en]

Wireless communications is one of the most successful technologies in modern years, given that an exponential growth rate in wireless traffic has been sustained for over a century (known as Cooper's law). This trend will certainly continue, driven by new innovative applications; for example, augmented reality and the Internet of Things. Massive MIMO has been identified as a key technology to handle orders of magnitude more data traffic. Despite the attention it is receiving from the communication community, we have personally witnessed that Massive MIMO is subject to several widespread misunderstandings, as epitomized by following (fictional) abstract: "The Massive MIMO technology uses a nearly infinite number of high-quality antennas at the base stations. By having at least an order of magnitude more antennas than active terminals, one can exploit asymptotic behaviors that some special kinds of wireless channels have. This technology looks great at first sight, but unfortunately the signal processing complexity is off the charts and the antenna arrays would be so huge that it can only be implemented in millimeter-wave bands." These statements are, in fact, completely false. In this overview article, we identify 10 myths and explain why they are not true. We also ask a question that is critical for the practical adoption of the technology and which will require intense future research activities to answer properly. We provide references to key technical papers that support our claims, while a further list of related overview and technical papers can be found at the Massive MIMO Info Point: http://massivemimo.eu

Place, publisher, year, edition, pages
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC , 2016. Vol. 54, no 2, p. 114-123
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-295935DOI: 10.1109/MCOM.2016.7402270ISI: 000370874200015Scopus ID: 2-s2.0-84962028702OAI: oai:DiVA.org:kth-295935DiVA, id: diva2:1663810
Note

QC 20220620

Available from: 2022-06-02 Created: 2022-06-02 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Björnson, Emil

Search in DiVA

By author/editor
Björnson, Emil
In the same journal
IEEE Communications Magazine
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf