kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Max-Min Fair Transmit Precoding for Multi-Group Multicasting in Massive MIMO
Singapore Univ Technol & Design, Singapore 487372, Singapore..
Department of Electrical Engineering (ISY), Linköping University, Linköping, 581 83, Sweden.ORCID iD: 0000-0002-5954-434x
Linköping Univ, Dept Elect Engn ISY, S-58183 Linköping, Sweden..ORCID iD: 0000-0002-7599-4367
Singapore Univ Technol & Design, Singapore 487372, Singapore..ORCID iD: 0000-0002-9307-2120
Show others and affiliations
2018 (English)In: IEEE Transactions on Wireless Communications, ISSN 1536-1276, E-ISSN 1558-2248, Vol. 17, no 2, p. 1358-1373Article in journal (Refereed) Published
Abstract [en]

This paper considers the downlink precoding for physical layer multicasting in massive multiple-input multiple-output (MIMO) systems. We study the max-min fairness (MMF) problem, where channel state information at the transmitter is used to design precoding vectors that maximize the minimum spectral efficiency (SE) of the system, given fixed power budgets for uplink training and downlink transmission. Our system model accounts for channel estimation, pilot contamination, arbitrary path-losses, and multi-group multicasting. We consider six scenarios with different transmission technologies (unicast and multicast), different pilot assignment strategies (dedicated or shared pilot assignments), and different precoding schemes (maximum ratio transmission and zero forcing), and derive achievable spectral efficiencies for all possible combinations. Then, we solve the MMF problem for each of these scenarios, and for any given pilot length, we find the SE maximizing uplink pilot and downlink data transmission policies, all in closed forms. We use these results to draw a general guideline for massive MIMO multicasting design, where for a given number of base station antennas, number of users, and coherence interval length, we determine the multicasting scheme that shall be used.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2018. Vol. 17, no 2, p. 1358-1373
Keywords [en]
Multicast transmission, massive MIMO, physical layer precoding, large-scale antenna systems
National Category
Signal Processing Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-295881DOI: 10.1109/TWC.2017.2777987ISI: 000424945600048Scopus ID: 2-s2.0-85038352945OAI: oai:DiVA.org:kth-295881DiVA, id: diva2:1663993
Note

QC 20220608

Available from: 2022-06-03 Created: 2022-06-03 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Björnson, Emil

Search in DiVA

By author/editor
Björnson, EmilLarsson, Erik G.Yuen, Chau
In the same journal
IEEE Transactions on Wireless Communications
Signal ProcessingTelecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf