Massive multiple-input multiple-output (MIMO) is a viable technology to improve the spectral efficiency (SE) by spatially multiplexing several users. A potential limitation of Massive MIMO in multicell systems is pilot contamination, which arises from interference in the channel estimation due to the reuse of pilot sequences in neighboring cells. A standard method to reduce pilot contamination, referred to as regular pilot (RP), is to adjust the length of the pilot sequences while transmitting data and pilot symbols disjointly. Alternatively, the superimposed pilot (SP) method sends a superposition of pilot and data symbols, thereby allowing the use of longer pilots which can also reduce pilot contamination. This work considers the uplink of a general multicell Massive MIMO system with SP and maximum ratio combining and derives rigorous closed-form achievable rates, which are used to make comparisons with RP. Numerical results consider a realistic random base station deployment and show that with SP the reduction of pilot contamination is outweighed by the additional coherent and non-coherent interference from the data transmission. Moreover, it turns out that, when the pilot length is optimized, RP provides comparable SE as with SP.
QC 20220616
Part of proceedings: ISBN 978-1-5090-5019-2