kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Predicting the trabecular bone apparent stiffness tensor with spherical convolutional neural networks
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.ORCID iD: 0000-0003-3502-7441
Eindhoven Univ Technol, Eindhoven, Netherlands..
Vienna Univ Technol, Inst Lightweight Design & Struct Biomech, Vienna, Austria.;Karl Landsteiner Univ, Biomech Div, Vienna, Austria..
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.ORCID iD: 0000-0001-5765-2964
2022 (English)In: Bone Reports, E-ISSN 2352-1872, Vol. 16, p. 101179-, article id 101179Article in journal (Refereed) Published
Abstract [en]

The apparent stiffness tensor is relevant for characterizing trabecular bone quality. Previous studies have used morphology-stiffness relationships for estimating the apparent stiffness tensor. In this paper, we propose to train spherical convolutional neural networks (SphCNNs) to estimate this tensor. Information of the edges, trabecular thickness, and spacing are summarized in functions on the unitary sphere used as inputs for the SphCNNs. The concomitant dimensionality reduction makes it possible to train neural networks on relatively small datasets. The predicted tensors were compared to the stiffness tensors computed by using the micro-finite element method (mu FE), which was considered as the gold standard, and models based on fourth-order fabric tensors. Combining edges and trabecular thickness yields significant improvements in the accuracy compared to the methods based on fourth-order fabric tensors. From the results, SphCNNs are promising for replacing the more expensive mu FE stiffness estimations.

Place, publisher, year, edition, pages
Elsevier BV , 2022. Vol. 16, p. 101179-, article id 101179
Keywords [en]
Apparent stiffness tensor, Trabecular bone, Spherical convolutional neural networks
National Category
Orthopaedics Neurology Medical Laboratory Technologies
Identifiers
URN: urn:nbn:se:kth:diva-314204DOI: 10.1016/j.bonr.2022.101179ISI: 000804615600002PubMedID: 35309107Scopus ID: 2-s2.0-85126548178OAI: oai:DiVA.org:kth-314204DiVA, id: diva2:1670971
Note

QC 20220616

Available from: 2022-06-16 Created: 2022-06-16 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Geometric Deep Learning for Medical Image Processing Problems
Open this publication in new window or tab >>Geometric Deep Learning for Medical Image Processing Problems
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis consists of four studies, each suggesting incorporating geometric deep-learning methods in medical image-processing pipelines.

The rationale here is that a) conventional Deep learning (DL) models for medical imaging depend highly on the quality and quantity of training data, and b) medical images commonly represent structures with intrinsic geometrical properties that standard DL models do not necessarily respect. 

The first study focuses on predicting stiffness tensors from micro-CT trabecular bone scans. This prediction task requires learning from the complex structures of trabecular bone with limited data available. Our proposed model uses a spherical convolutional neural network (SphCNN) for this purpose. The second study investigates lung cancer survival rate prediction based on image-based features. We evaluate a proposed SphCNN-based pipeline using CT images of non-small cell lung cancer. The third study centres on the stability of the streamline tractography algorithm under arbitrary 3D rotations. We propose integrating an SE(3)-equivariant transformer model into the tractography framework to preserve rotational equivariance. The fourth study evaluates a structural connectivity pipeline in combination with tractography filtering, subsequent classification and analysis. The pipeline is evaluated based on its ability to identify group differences in brain connectivity related to Parkinson's disease. 

Abstract [sv]

I denna avhandling presenteras fyra studier som tillsammans utforskar en integration av geometriska djupinlärningsmetoder i bildbehandling för medicinska tillämpningar.

Motivationen till detta är att a) konventionella djupinlärningsmodeller för medicinsk avbildning i hög grad är beroende av träningsdatans mängd och kvalitet, samt b) medicinska bilder ofta avbildar strukturer med inneboende geometriska egenskaper som traditionella djupinlärningsmodeller inte nödvändigtvis tar hänsyn till.

Den första studien fokuserar på att förutsäga styvhetstensorer baserat på mikro-CT-bilder av trabekulärt ben. Denna förutsägelse kräver inlärning från de komplexa strukturerna i trabekulärt ben med begränsad tillgång på data. Vår föreslagna modell använder ett sfäriskt faltningseuronnät  (SphCNN) för detta ändamål. Den andra studien undersöker överlevnadsprognoser vid lungcancer utifrån bildbaserade egenskaper. Vi utvärderar en föreslagen pipeline, baserad på SphCNN, med CT-bilder av icke-småcellig lungcancer. Den tredje studien fokuserar på stabiliteten hos en traktografialgoritm för riktade fibrer under godtyckliga tredimensionella rotationer. Vi föreslår att integrera en SE(3)-ekvivariant transformermodell i traktografins ramverk för att bevara rotations-ekvivariansen. Den fjärde studien utvärderar en pipeline för strukturell konnektivitet i kombination med traktogramfiltrering, klassificering och analys. Pipelinen utvärderas utifrån dess förmåga att identifiera skillnader i hjärnans konnektivitet kopplat till Parkinsons sjukdom.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2024. p. 114
Series
TRITA-CBH-FOU ; 2024:48
Keywords
Geometric Deep Learning, Medical Image Processing, Diffusion Brain MRI, Spherical Convolutional Neural Networks, Structural Connectivity, Bone Stiffness Tensor Prediction, Lung Cancer Survival Rate Prediction, Tractography, Geometriskt djupinlärning, Medicinsk bildbehandling, Diffusions hjärn-MRI, Sfäriska konvolutionella neurala nätverk, Strukturell konnektivitet, Styvhetstensorprediktion för ben, Lungcancersöverlevnadsprognos, Traktografi
National Category
Medical Imaging
Research subject
Medical Technology
Identifiers
urn:nbn:se:kth:diva-355899 (URN)978-91-8106-095-9 (ISBN)
Public defence
2024-11-29, T2 (Jacobssonsalen), Hälsovägen 11C, Huddinge, via Zoom: https://kth-se.zoom.us/j/62762467727, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2024-11-06

Available from: 2024-11-06 Created: 2024-11-06 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Sinzinger, FabianMoreno, Rodrigo

Search in DiVA

By author/editor
Sinzinger, FabianMoreno, Rodrigo
By organisation
Medical Imaging
In the same journal
Bone Reports
OrthopaedicsNeurologyMedical Laboratory Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 90 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf